{"title":"A novel initiative on vertical-axis underwater turbine suitable for low underwater current velocities","authors":"J. Agbakwuru, U. Ibrahim","doi":"10.3723/ut.36.043","DOIUrl":null,"url":null,"abstract":"The present paper discusses efforts made to reinvent the use of the vertical-axis turbine for use in locations of low underwater current velocities. The present work targets the low flow current of the sub-Saharan ocean system, which has an underwater current record of around 0.3 m/s\n and a sea state that is mild, benign and with little or no local storms. The present initiative is achieved through a combination of ducting techniques to increase velocity of flow, and the utilisation of a large surface contact area exposed to flowing water per unit of time. Torque estimations\n are made using three methods: first principle, SolidWorks computational fluid dynamics (CFD) software and physical measurement. The lowest power coefficient for the tested model is computed from SolidWorks CFD software as 0.70. Existing state-of-the-art underwater current power technologies\n are reviewed and the present initiative described. A future for ocean water current technology in sub-Saharan Africa is also proposed.","PeriodicalId":44271,"journal":{"name":"UNDERWATER TECHNOLOGY","volume":"9 1","pages":"43-51"},"PeriodicalIF":0.4000,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNDERWATER TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3723/ut.36.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The present paper discusses efforts made to reinvent the use of the vertical-axis turbine for use in locations of low underwater current velocities. The present work targets the low flow current of the sub-Saharan ocean system, which has an underwater current record of around 0.3 m/s
and a sea state that is mild, benign and with little or no local storms. The present initiative is achieved through a combination of ducting techniques to increase velocity of flow, and the utilisation of a large surface contact area exposed to flowing water per unit of time. Torque estimations
are made using three methods: first principle, SolidWorks computational fluid dynamics (CFD) software and physical measurement. The lowest power coefficient for the tested model is computed from SolidWorks CFD software as 0.70. Existing state-of-the-art underwater current power technologies
are reviewed and the present initiative described. A future for ocean water current technology in sub-Saharan Africa is also proposed.