Two-Stage Topological Refinement Network for Retinal Artery/Vein Classification

Shichen Luo, Zhan Heng, M. Pagnucco, Yang Song
{"title":"Two-Stage Topological Refinement Network for Retinal Artery/Vein Classification","authors":"Shichen Luo, Zhan Heng, M. Pagnucco, Yang Song","doi":"10.1109/ISBI52829.2022.9761669","DOIUrl":null,"url":null,"abstract":"Automated retinal artery/vein (A/V) classification could significantly speed up computer-aided diagnosis of various cardiovascular and systemic diseases. Despite the successful application of deep learning methods to A/V segmentation and classification, exploiting topological information in deep learning methods remains a challenging task. We propose a novel two-stage cascaded deep learning framework to spread the workload across a U-Net with dual decoders and a topological refinement GAN, with a focus on the pixel-level features and topological features respectively. The proposed framework accomplishes state-of-the-art performance in A/V classification on the public AV-DRIVE, INSPIRE-AVR and LES-AV datasets and effectively improves the topological connectedness of the classification results.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"4 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Automated retinal artery/vein (A/V) classification could significantly speed up computer-aided diagnosis of various cardiovascular and systemic diseases. Despite the successful application of deep learning methods to A/V segmentation and classification, exploiting topological information in deep learning methods remains a challenging task. We propose a novel two-stage cascaded deep learning framework to spread the workload across a U-Net with dual decoders and a topological refinement GAN, with a focus on the pixel-level features and topological features respectively. The proposed framework accomplishes state-of-the-art performance in A/V classification on the public AV-DRIVE, INSPIRE-AVR and LES-AV datasets and effectively improves the topological connectedness of the classification results.
视网膜动/静脉分类的两阶段拓扑细化网络
自动视网膜动脉/静脉(A/V)分类可以显著加快各种心血管和全身性疾病的计算机辅助诊断。尽管深度学习方法成功地应用于影音分割和分类,但在深度学习方法中利用拓扑信息仍然是一项具有挑战性的任务。我们提出了一种新的两阶段级联深度学习框架,将工作负载分散到具有双解码器和拓扑细化GAN的U-Net上,分别关注像素级特征和拓扑特征。该框架在公共AV-DRIVE、INSPIRE-AVR和LES-AV数据集上实现了最先进的A/V分类性能,并有效提高了分类结果的拓扑连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信