Tensor-cell2cell v2 unravels coordinated dynamics of protein- and metabolite-mediated cell-cell communication.

Erick Armingol, Reid O Larsen, Lia Gale, Martin Cequeira, Hratch Baghdassarian, Nathan E Lewis
{"title":"Tensor-cell2cell v2 unravels coordinated dynamics of protein- and metabolite-mediated cell-cell communication.","authors":"Erick Armingol, Reid O Larsen, Lia Gale, Martin Cequeira, Hratch Baghdassarian, Nathan E Lewis","doi":"10.1101/2022.11.02.514917","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-cell communication dynamically changes across time while involving diverse cell populations and ligand types such as proteins and metabolites. While single-cell transcriptomics enables its inference, existing tools typically analyze ligand types separately and overlook their coordinated activity. Here, we present Tensor-cell2cell v2, a computational tool that can jointly analyze protein- and metabolite-mediated communication over time using coupled tensor component analysis, while preserving each modality of inferred communication scores independently, as well as their data structures and distributions. Applied to brain organoid development, Tensor-cell2cell v2 uncovers dynamic, coordinated communication programs involving key proteins and metabolites across relevant cell types across specific time points.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424845/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.11.02.514917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-cell communication dynamically changes across time while involving diverse cell populations and ligand types such as proteins and metabolites. While single-cell transcriptomics enables its inference, existing tools typically analyze ligand types separately and overlook their coordinated activity. Here, we present Tensor-cell2cell v2, a computational tool that can jointly analyze protein- and metabolite-mediated communication over time using coupled tensor component analysis, while preserving each modality of inferred communication scores independently, as well as their data structures and distributions. Applied to brain organoid development, Tensor-cell2cell v2 uncovers dynamic, coordinated communication programs involving key proteins and metabolites across relevant cell types across specific time points.

Tensor-cell2cell v2揭示了蛋白质和代谢物介导的细胞间通讯的协调动力学。
摘要:细胞间的通讯随时间而动态变化,涉及不同的细胞群和配体类型,如蛋白质和代谢物。虽然单细胞转录组学可以进行推断,但现有的工具通常是单独分析配体类型,而忽略了它们的协同活性。在这里,我们提出了tensor -cell2cell v2,这是一个计算工具,可以使用耦合张量分量分析联合分析蛋白质和代谢物介导的通信随时间的变化,同时独立保留推断通信评分的每种模式,以及它们的数据结构和分布。应用于脑类器官发育,Tensor-cell2cell v2揭示了跨特定时间点相关细胞类型涉及关键蛋白质和代谢物的动态,协调的通信程序。可用性和实现:tensor -cell2cell v2及其新的耦合张量分量分析是用Python实现的,可以在https://github.com/earmingol/cell2cell上作为cell2cell框架的一部分获得。这个python库在PyPI上可用。该手稿的分析可以在https://doi.org/10.24433/CO.0061424.v1的Code Ocean胶囊中复制,在线教程可以在https://cell2cell.readthedocs.io上找到。补充信息:补充数据可在bioRxiv在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信