{"title":"Constant scalar curvature Kähler metrics on ramified Galois coverings","authors":"C. Arezzo, A. Della Vedova, Yalong Shi","doi":"10.1515/crelle-2023-0026","DOIUrl":null,"url":null,"abstract":"Abstract We give sufficient conditions for the existence of Kähler–Einstein and constant scalar curvature Kähler (cscK) metrics on finite ramified Galois coverings of a cscK manifold in terms of cohomological conditions on the Kähler classes and the branching divisor. This result generalizes previous work on Kähler–Einstein metrics by Li and Sun [C. Li and S. Sun, Conical Kähler–Einstein metrics revisited, Comm. Math. Phys. 331 2014, 3, 927–973], and extends Chen–Cheng’s existence results for cscK metrics in [X. Chen and J. Cheng, On the constant scalar curvature Kähler metrics (II)—Existence results, J. Amer. Math. Soc. 34 2021, 4, 937–1009].","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0026","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We give sufficient conditions for the existence of Kähler–Einstein and constant scalar curvature Kähler (cscK) metrics on finite ramified Galois coverings of a cscK manifold in terms of cohomological conditions on the Kähler classes and the branching divisor. This result generalizes previous work on Kähler–Einstein metrics by Li and Sun [C. Li and S. Sun, Conical Kähler–Einstein metrics revisited, Comm. Math. Phys. 331 2014, 3, 927–973], and extends Chen–Cheng’s existence results for cscK metrics in [X. Chen and J. Cheng, On the constant scalar curvature Kähler metrics (II)—Existence results, J. Amer. Math. Soc. 34 2021, 4, 937–1009].
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.