Effects of viscous dissipation and thermal radiation on time dependent incompressible squeezing flow of CuO−Al2O3/water hybrid nanofluid between two parallel plates with variable viscosity

O.A. Famakinwa, O.K. Koriko, K.S. Adegbie
{"title":"Effects of viscous dissipation and thermal radiation on time dependent incompressible squeezing flow of CuO−Al2O3/water hybrid nanofluid between two parallel plates with variable viscosity","authors":"O.A. Famakinwa,&nbsp;O.K. Koriko,&nbsp;K.S. Adegbie","doi":"10.1016/j.jcmds.2022.100062","DOIUrl":null,"url":null,"abstract":"<div><p>In view of the dominant properties of hybrid nanofluid such as high thermal and electrical conductivity in addition to enhanced heat transfer rate, efforts had been strengthened by many researchers to upgrade the thermal behavior of the base fluid through different approaches. In this study, viscous dissipation and thermal radiation effects on unsteady incompressible squeezing flow conveying <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi><mo>−</mo><mi>A</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>/</mo></mrow></math></span>water hybrid nanoparticles between two aligned surfaces with variable viscosity is examined. The fluid model is transformed to ordinary differential equations by incorporating appropriate similarity transformation. The numerical simulation is carried out in MATLAB software package via shooting procedure coupled with <span><math><mrow><mn>4</mn><mi>t</mi><mi>h</mi></mrow></math></span> order Runge–Kutta integration scheme. The limiting case is found to be in accord relative to the preceding reports. The outcomes of the scrutiny are unveiled in tables and graphs. It was revealed that the velocity and temperature augment with increasing viscosity variation and squeezing fluid parameters. Meanwhile, increasing viscous dissipation and thermal radiation parameters decrease the temperature distribution with no significant change in the fluid velocity.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"5 ","pages":"Article 100062"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000220/pdfft?md5=9424e5a9e389ee13b5970c55ab05f778&pid=1-s2.0-S2772415822000220-main.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In view of the dominant properties of hybrid nanofluid such as high thermal and electrical conductivity in addition to enhanced heat transfer rate, efforts had been strengthened by many researchers to upgrade the thermal behavior of the base fluid through different approaches. In this study, viscous dissipation and thermal radiation effects on unsteady incompressible squeezing flow conveying CuOAl2O3/water hybrid nanoparticles between two aligned surfaces with variable viscosity is examined. The fluid model is transformed to ordinary differential equations by incorporating appropriate similarity transformation. The numerical simulation is carried out in MATLAB software package via shooting procedure coupled with 4th order Runge–Kutta integration scheme. The limiting case is found to be in accord relative to the preceding reports. The outcomes of the scrutiny are unveiled in tables and graphs. It was revealed that the velocity and temperature augment with increasing viscosity variation and squeezing fluid parameters. Meanwhile, increasing viscous dissipation and thermal radiation parameters decrease the temperature distribution with no significant change in the fluid velocity.

黏性耗散和热辐射对变黏度平行板间CuO−Al2O3/水混合纳米流体不可压缩压缩流动的影响
鉴于混合纳米流体具有高导热、高导电性和高传热率等主要特性,许多研究人员通过不同的方法来提升基流体的热行为。在这项研究中,粘性耗散和热辐射对非定常不可压缩压缩流动输送CuO−Al2O3/水杂化纳米颗粒在两个排列的可变粘度表面之间的影响进行了研究。通过适当的相似变换,将流体模型转化为常微分方程。在MATLAB软件包中通过射击程序结合四阶龙格-库塔积分方案进行数值模拟。发现极限情况与前面的报告是一致的。审查的结果以表格和图表的形式呈现出来。结果表明,速度和温度随黏度变化和挤压流体参数的增大而增大。同时,增加粘性耗散和热辐射参数会降低温度分布,但流体速度变化不明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信