Toric ideals of weighted oriented graphs

Jennifer Biermann, Selvi Kara, Kuei-Nuan Lin, Augustine O’Keefe
{"title":"Toric ideals of weighted oriented graphs","authors":"Jennifer Biermann, Selvi Kara, Kuei-Nuan Lin, Augustine O’Keefe","doi":"10.1142/s0218196722500151","DOIUrl":null,"url":null,"abstract":"Given a vertex-weighted oriented graph, we can associate to it a set of monomials. We consider the toric ideal whose defining map is given by these monomials. We find a generating set for the toric ideal for certain classes of graphs which depends on the combinatorial structure and weights of the graph. We provide a result analogous to the unweighted, unoriented graph case, to show that when the associated simple graph has only trivial even closed walks, the toric ideal is the zero ideal. Moreover, we give necessary and sufficient conditions for the toric ideal of a weighted oriented graph to be generated by a single binomial and we describe the binomial in terms of the structure of the graph.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"108 1","pages":"307-325"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a vertex-weighted oriented graph, we can associate to it a set of monomials. We consider the toric ideal whose defining map is given by these monomials. We find a generating set for the toric ideal for certain classes of graphs which depends on the combinatorial structure and weights of the graph. We provide a result analogous to the unweighted, unoriented graph case, to show that when the associated simple graph has only trivial even closed walks, the toric ideal is the zero ideal. Moreover, we give necessary and sufficient conditions for the toric ideal of a weighted oriented graph to be generated by a single binomial and we describe the binomial in terms of the structure of the graph.
加权有向图的环面理想
给定一个顶点加权的有向图,我们可以给它关联一组单项式。我们考虑其定义映射由这些单项式给出的环理想。我们找到了一类图的环理想的生成集,它依赖于图的组合结构和权值。我们提供了一个类似于无权无向图情况的结果,证明了当所关联的简单图只有平凡的偶闭游动时,其环面理想为零理想。此外,我们给出了由单个二项生成的加权有向图的环理想的充分必要条件,并用图的结构描述了二项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信