Fast Fourier Sparsity Testing

G. Yaroslavtsev, Samson Zhou
{"title":"Fast Fourier Sparsity Testing","authors":"G. Yaroslavtsev, Samson Zhou","doi":"10.1137/1.9781611976014.10","DOIUrl":null,"url":null,"abstract":"A function $f : \\mathbb{F}_2^n \\to \\mathbb{R}$ is $s$-sparse if it has at most $s$ non-zero Fourier coefficients. Motivated by applications to fast sparse Fourier transforms over $\\mathbb{F}_2^n$, we study efficient algorithms for the problem of approximating the $\\ell_2$-distance from a given function to the closest $s$-sparse function. While previous works (e.g., Gopalan et al. SICOMP 2011) study the problem of distinguishing $s$-sparse functions from those that are far from $s$-sparse under Hamming distance, to the best of our knowledge no prior work has explicitly focused on the more general problem of distance estimation in the $\\ell_2$ setting, which is particularly well-motivated for noisy Fourier spectra. Given the focus on efficiency, our main result is an algorithm that solves this problem with query complexity $\\mathcal{O}(s)$ for constant accuracy and error parameters, which is only quadratically worse than applicable lower bounds.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"14 1","pages":"57-68"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976014.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A function $f : \mathbb{F}_2^n \to \mathbb{R}$ is $s$-sparse if it has at most $s$ non-zero Fourier coefficients. Motivated by applications to fast sparse Fourier transforms over $\mathbb{F}_2^n$, we study efficient algorithms for the problem of approximating the $\ell_2$-distance from a given function to the closest $s$-sparse function. While previous works (e.g., Gopalan et al. SICOMP 2011) study the problem of distinguishing $s$-sparse functions from those that are far from $s$-sparse under Hamming distance, to the best of our knowledge no prior work has explicitly focused on the more general problem of distance estimation in the $\ell_2$ setting, which is particularly well-motivated for noisy Fourier spectra. Given the focus on efficiency, our main result is an algorithm that solves this problem with query complexity $\mathcal{O}(s)$ for constant accuracy and error parameters, which is only quadratically worse than applicable lower bounds.
快速傅里叶稀疏性测试
一个函数$f: \mathbb{f}_2^n \到\mathbb{R}$ $是$s$-稀疏的,如果它有最多$s$的非零傅立叶系数。基于在$\mathbb{F}_2^n$上的快速稀疏傅里叶变换的应用,我们研究了$\ell_2$-从给定函数到最近的$s$-稀疏函数的距离逼近问题的有效算法。而之前的研究(如Gopalan等人)。SICOMP 2011)研究了在Hamming距离下区分$s$-稀疏函数与那些远离$s$-稀疏函数的问题,据我们所知,没有先前的工作明确地关注$\ell_2$设置中更普遍的距离估计问题,这对于有噪声的傅立叶谱尤其有很好的推动作用。考虑到对效率的关注,我们的主要结果是一种算法,它可以用恒定精度和误差参数的查询复杂度$\mathcal{O}(s)$来解决这个问题,它只比适用的下界差二次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信