{"title":"Un système dynamique lié à la suite des nombres premiers","authors":"Alain Costé","doi":"10.1016/S0764-4442(01)02099-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study the dynamical system defined by the map <span><math><mtext>Φ:</mtext><mspace></mspace><mtext>]0,1]→</mtext><mspace></mspace><mtext>]0,1]</mtext></math></span>, where <em>Φ</em>(<em>x</em>)=<em>px</em>−1 on ]1/<em>p</em>,1/<em>q</em>] if <em>q</em> and <em>p</em> are consecutive prime numbers. We relate the existence of an absolutely continuous invariant measure to ergodicity of a Markov chain <span><math><mtext>P</mtext></math></span> on the union of orbits stemming from numbers 1/<em>p</em> (<em>p</em> prime). We prove that ergodicity of <span><math><mtext>P</mtext></math></span> implies ergodicity of <em>Φ</em>. We establish a link between transfer probabilities of order <em>n</em> and some sets of sequences of the symbolic dynamic. This leads to a way of computing these coefficients using Monte Carlo method. We propose an algorithm which leads to a density indicating a good experimental fit with a typical orbit.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 663-668"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02099-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201020997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study the dynamical system defined by the map , where Φ(x)=px−1 on ]1/p,1/q] if q and p are consecutive prime numbers. We relate the existence of an absolutely continuous invariant measure to ergodicity of a Markov chain on the union of orbits stemming from numbers 1/p (p prime). We prove that ergodicity of implies ergodicity of Φ. We establish a link between transfer probabilities of order n and some sets of sequences of the symbolic dynamic. This leads to a way of computing these coefficients using Monte Carlo method. We propose an algorithm which leads to a density indicating a good experimental fit with a typical orbit.
我们研究了由映射Φ:]0,1]→]0,1]所定义的动力系统,其中Φ(x)=px−1在[1/p,1/q]上,如果q和p是连续素数。我们将一个绝对连续不变测度的存在性与马尔可夫链P在由数1/ P (P ')产生的轨道联合上的遍历性联系起来。我们证明P的遍历性意味着Φ的遍历性。我们建立了n阶传递概率与若干符号动态序列集之间的联系。这导致了一种使用蒙特卡罗方法计算这些系数的方法。我们提出了一种算法,该算法可以得到一个密度,表明与典型轨道的实验拟合很好。