Hidden Markov Models in Time Series, with Applications in Economics

S. Kaufmann
{"title":"Hidden Markov Models in Time Series, with Applications in Economics","authors":"S. Kaufmann","doi":"10.1201/9780429055911-13","DOIUrl":null,"url":null,"abstract":"Markov models introduce persistence in the mixture distribution. In time series analysis, the mixture components relate to different persistent states characterizing the state-specific time series process. Model specification is discussed in a general form. Emphasis is put on the functional form and the parametrization of timeinvariant and time-varying specifications of the state transition distribution. The concept of mean-square stability is introduced to discuss the condition under which Markov switching processes have finite first and second moments in the indefinite future. Not surprisingly, a time series process may be mean-square stable even if it switches between bounded and unbounded state-specific processes. Surprisingly, switching between stable state-specific processes is neither necessary nor sufficient to obtain a mean-square stable time series process. Model estimation proceeds by data augmentation. We derive the basic forward-filtering backward-smoothing/sampling algorithm to infer on the latent state indicator in maximum likelihood and Bayesian estimation procedures. Emphasis is again laid on the state transition distribution. We discuss the specification of state-invariant prior parameter distributions and posterior parameter inference under either a logit or probit functional form of the state transition distribution. With simulated data, we show that the estimation of parameters under a probit functional form is more efficient. However, a probit functional form renders estimation extremely slow if more than two states drive the time series process. Finally, various applications illustrate how to obtain informative switching in Markov switching models with time-invariant and time-varying transition distributions.","PeriodicalId":12943,"journal":{"name":"Handbook of Mixture Analysis","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Mixture Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429055911-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Markov models introduce persistence in the mixture distribution. In time series analysis, the mixture components relate to different persistent states characterizing the state-specific time series process. Model specification is discussed in a general form. Emphasis is put on the functional form and the parametrization of timeinvariant and time-varying specifications of the state transition distribution. The concept of mean-square stability is introduced to discuss the condition under which Markov switching processes have finite first and second moments in the indefinite future. Not surprisingly, a time series process may be mean-square stable even if it switches between bounded and unbounded state-specific processes. Surprisingly, switching between stable state-specific processes is neither necessary nor sufficient to obtain a mean-square stable time series process. Model estimation proceeds by data augmentation. We derive the basic forward-filtering backward-smoothing/sampling algorithm to infer on the latent state indicator in maximum likelihood and Bayesian estimation procedures. Emphasis is again laid on the state transition distribution. We discuss the specification of state-invariant prior parameter distributions and posterior parameter inference under either a logit or probit functional form of the state transition distribution. With simulated data, we show that the estimation of parameters under a probit functional form is more efficient. However, a probit functional form renders estimation extremely slow if more than two states drive the time series process. Finally, various applications illustrate how to obtain informative switching in Markov switching models with time-invariant and time-varying transition distributions.
时间序列中的隐马尔可夫模型及其在经济学中的应用
马尔可夫模型在混合分布中引入了持久性。在时间序列分析中,混合成分与表征特定状态的时间序列过程的不同持久状态有关。以一般形式讨论模型规范。重点讨论了状态转移分布的定常和时变参数的函数形式和参数化问题。引入均方稳定性的概念,讨论了马尔可夫切换过程在不确定未来具有有限第一阶矩和有限第二阶矩的条件。毫不奇怪,时间序列过程可能是均方稳定的,即使它在有界和无界状态特定过程之间切换。令人惊讶的是,在稳定的特定状态过程之间进行切换对于获得均方稳定时间序列过程既不是必要的,也不是充分的。模型估计通过数据扩充进行。我们推导了基本的前向滤波后向平滑/采样算法来推断最大似然和贝叶斯估计过程中的潜在状态指标。重点再次放在状态转换分布上。讨论了状态转移分布的logit或probit函数形式下状态不变先验参数分布和后验参数推断的规范。通过仿真数据,我们证明了probit函数形式下的参数估计更有效。然而,如果超过两个状态驱动时间序列过程,概率函数形式会使估计非常缓慢。最后,各种应用说明了如何在具有时不变和时变转换分布的马尔可夫切换模型中获得信息切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信