{"title":"Construction of the fitness function depending on a set of competing strategies based on the analysis of population dynamics","authors":"O. Kuzenkov","doi":"10.18500/0869-6632-2022-30-3-276-298","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to construct a fitness function that depends on the set of coexisting competing hereditary elements based on population dynamics in the “predator– prey” model with the logistic growth of prey. Materials and methods. The work uses the generalized Volterra model. The planktivorous fish plays the role of a predator. Many different species of zooplankton are considered as prey, which differ from each other in the hereditary strategies of daily vertical migrations. The model takes into account the intraspecific competition of prey. The peculiarity of the model consists of the presence of pairs of hereditary strategies in which the carriers of the first can displace the carriers of the second and vice versa — the carriers of the second can displace the carriers of the first, depending on the set of competing strategies in which they coexist. To restore the fitness function, the ranking method is used, which is reduced to the classification of ordered pairs of hereditary strategies into two classes “the first strategy displaces the second” and “the second displaces the first”. Results. The article presents a new methodology for constructing the fitness function. The technique involves two stages. First, the fitness function is reconstructed for a certain finite subset of elements on the basis of processing data on the long-term dynamics and comparing their competitive advantages. At the second stage, the form of the fitness function is derived for an arbitrary set of elements. It uses the features of interspecies interaction reflected in the model. With the help of the constructed fitness function, an evolutionarily stable regime of daily vertical migrations of zooplankton is modeled by numerically solving the minimax problem. Conclusion. The proposed method for constructing a fitness function that depends on a set of competing strategies is quite general and can be applied to a wide range of models of population dynamics. The strategy of diel vertical migrations of zooplankton constructed as a result of modeling is in good agreement with empirical data.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"58 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-3-276-298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this work is to construct a fitness function that depends on the set of coexisting competing hereditary elements based on population dynamics in the “predator– prey” model with the logistic growth of prey. Materials and methods. The work uses the generalized Volterra model. The planktivorous fish plays the role of a predator. Many different species of zooplankton are considered as prey, which differ from each other in the hereditary strategies of daily vertical migrations. The model takes into account the intraspecific competition of prey. The peculiarity of the model consists of the presence of pairs of hereditary strategies in which the carriers of the first can displace the carriers of the second and vice versa — the carriers of the second can displace the carriers of the first, depending on the set of competing strategies in which they coexist. To restore the fitness function, the ranking method is used, which is reduced to the classification of ordered pairs of hereditary strategies into two classes “the first strategy displaces the second” and “the second displaces the first”. Results. The article presents a new methodology for constructing the fitness function. The technique involves two stages. First, the fitness function is reconstructed for a certain finite subset of elements on the basis of processing data on the long-term dynamics and comparing their competitive advantages. At the second stage, the form of the fitness function is derived for an arbitrary set of elements. It uses the features of interspecies interaction reflected in the model. With the help of the constructed fitness function, an evolutionarily stable regime of daily vertical migrations of zooplankton is modeled by numerically solving the minimax problem. Conclusion. The proposed method for constructing a fitness function that depends on a set of competing strategies is quite general and can be applied to a wide range of models of population dynamics. The strategy of diel vertical migrations of zooplankton constructed as a result of modeling is in good agreement with empirical data.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.