Adaptive Coding of Non-Negative Factorization Parameters with Application to Informed Source Separation

Max Bläser, Christian Rohlfing, Yingbo Gao, M. Wien
{"title":"Adaptive Coding of Non-Negative Factorization Parameters with Application to Informed Source Separation","authors":"Max Bläser, Christian Rohlfing, Yingbo Gao, M. Wien","doi":"10.1109/ICASSP.2018.8462584","DOIUrl":null,"url":null,"abstract":"Informed source separation (ISS) uses source separation for extracting audio objects out of their downmix given some pre-computed parameters. In recent years, non-negative tensor factorization (NTF) has proven to be a good choice for compressing audio objects at an encoding stage. At the decoding stage, these parameters are used to separate the downmix with Wiener-filtering. The quantized NTF parameters have to be encoded to a bit stream prior to transmission. In this paper, we propose to use context-based adaptive binary arithmetic coding (CABAC) for this task. CABAC is widely used in the video coding community and exploits local signal statistics. We adapt CABAC to the task of NTF-based ISS and show that our contribution outperforms reference coding methods.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"48 1","pages":"751-755"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Informed source separation (ISS) uses source separation for extracting audio objects out of their downmix given some pre-computed parameters. In recent years, non-negative tensor factorization (NTF) has proven to be a good choice for compressing audio objects at an encoding stage. At the decoding stage, these parameters are used to separate the downmix with Wiener-filtering. The quantized NTF parameters have to be encoded to a bit stream prior to transmission. In this paper, we propose to use context-based adaptive binary arithmetic coding (CABAC) for this task. CABAC is widely used in the video coding community and exploits local signal statistics. We adapt CABAC to the task of NTF-based ISS and show that our contribution outperforms reference coding methods.
非负分解参数的自适应编码及其在知情源分离中的应用
信息源分离(ISS)使用源分离从下混音中提取音频对象,给出一些预先计算的参数。近年来,非负张量分解(NTF)被证明是在编码阶段压缩音频对象的一个很好的选择。在解码阶段,使用这些参数与维纳滤波分离下混音。在传输之前,量化的NTF参数必须被编码成比特流。在本文中,我们建议使用基于上下文的自适应二进制算术编码(CABAC)来完成这项任务。CABAC在视频编码界得到了广泛的应用,它利用了局部信号的统计特性。我们将CABAC用于基于ntf的ISS任务,并表明我们的贡献优于参考编码方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信