Removal of the twin image artifact in holographic lens-free imaging by sparse dictionary learning and coding

B. Haeffele, Sophie Roth, Lin Zhou, R. Vidal
{"title":"Removal of the twin image artifact in holographic lens-free imaging by sparse dictionary learning and coding","authors":"B. Haeffele, Sophie Roth, Lin Zhou, R. Vidal","doi":"10.1109/ISBI.2017.7950625","DOIUrl":null,"url":null,"abstract":"Mitigating the effects of the twin image artifact is one of the key challenges in holographic lens-free microscopy. This artifact arises due to the fact that imaging detectors can only record the magnitude of the hologram wavefront but not the phase. Prior work addresses this problem by attempting to simultaneously estimate the missing phase and reconstruct an image of the object specimen. Here we explore a fundamentally different approach based on post-processing the reconstructed image using sparse dictionary learning and coding techniques originally developed for processing conventional images. First, a dictionary of atoms representing characteristics from either the true image of the specimen or the twin image are learned from a collection of patches of the observed images. Then, by expressing each patch of the observed image as a sparse linear combination of the dictionary atoms, the observed image is decomposed into a component that corresponds to the true image and another one that corresponds to the twin image artifact. Experiments on counting red blood cells demonstrate the effectiveness of the proposed approach.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Mitigating the effects of the twin image artifact is one of the key challenges in holographic lens-free microscopy. This artifact arises due to the fact that imaging detectors can only record the magnitude of the hologram wavefront but not the phase. Prior work addresses this problem by attempting to simultaneously estimate the missing phase and reconstruct an image of the object specimen. Here we explore a fundamentally different approach based on post-processing the reconstructed image using sparse dictionary learning and coding techniques originally developed for processing conventional images. First, a dictionary of atoms representing characteristics from either the true image of the specimen or the twin image are learned from a collection of patches of the observed images. Then, by expressing each patch of the observed image as a sparse linear combination of the dictionary atoms, the observed image is decomposed into a component that corresponds to the true image and another one that corresponds to the twin image artifact. Experiments on counting red blood cells demonstrate the effectiveness of the proposed approach.
基于稀疏字典学习和编码的全息无透镜成像中孪生图像伪影的去除
减轻双像伪影的影响是全息无透镜显微镜的关键挑战之一。这种伪影的产生是由于成像探测器只能记录全息波前的大小而不能记录相位。先前的工作通过试图同时估计缺失的相位和重建物体标本的图像来解决这个问题。在这里,我们探索了一种完全不同的方法,基于使用稀疏字典学习和编码技术对重建图像进行后处理,这些技术最初是为处理传统图像而开发的。首先,从观察到的图像块的集合中学习到代表样本真实图像或孪生图像特征的原子字典。然后,通过将观察图像的每个patch表示为字典原子的稀疏线性组合,将观察图像分解为一个对应于真图像的分量和另一个对应于孪生图像伪影的分量。红细胞计数实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信