{"title":"Generalization in a Hopfield network","authors":"J. Fontanari","doi":"10.1051/JPHYS:0199000510210242100","DOIUrl":null,"url":null,"abstract":"The performance of a Hopfield network in learning an extensive number of concepts having access only to a finite supply of typical data which exemplify the concepts is studied. The minimal number of examples which must be taught to the network in order it starts to create representations for the concepts is calculated analitically. It is shown that the mixture states play a crucial role in the creation of these representations","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"13 1","pages":"2421-2430"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510210242100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
The performance of a Hopfield network in learning an extensive number of concepts having access only to a finite supply of typical data which exemplify the concepts is studied. The minimal number of examples which must be taught to the network in order it starts to create representations for the concepts is calculated analitically. It is shown that the mixture states play a crucial role in the creation of these representations