Biorthogonal Approach to Infinite Dimensional Fractional Poisson Measure

Pub Date : 2022-05-06 DOI:10.1142/s0219025723500157
Jerome B. Bendong, Sheila M. Menchavez, Jose Luis da Silva
{"title":"Biorthogonal Approach to Infinite Dimensional Fractional Poisson Measure","authors":"Jerome B. Bendong, Sheila M. Menchavez, Jose Luis da Silva","doi":"10.1142/s0219025723500157","DOIUrl":null,"url":null,"abstract":"In this paper we use a biorthogonal approach to the analysis of the infinite dimensional fractional Poisson measure $\\pi_{\\sigma}^{\\beta}$, $0<\\beta\\leq1$, on the dual of Schwartz test function space $\\mathcal{D}'$. The Hilbert space $L^{2}(\\pi_{\\sigma}^{\\beta})$ of complex-valued functions is described in terms of a system of generalized Appell polynomials $\\mathbb{P}^{\\sigma,\\beta,\\alpha}$ associated to the measure $\\pi_{\\sigma}^{\\beta}$. The kernels $C_{n}^{\\sigma,\\beta}(\\cdot)$, $n\\in\\mathbb{N}_{0}$, of the monomials may be expressed in terms of the Stirling operators of the first and second kind as well as the falling factorials in infinite dimensions. Associated to the system $\\mathbb{P}^{\\sigma,\\beta,\\alpha}$, there is a generalized dual Appell system $\\mathbb{Q}^{\\sigma,\\beta,\\alpha}$ that is biorthogonal to $\\mathbb{P}^{\\sigma,\\beta,\\alpha}$. The test and generalized function spaces associated to the measure $\\pi_{\\sigma}^{\\beta}$ are completely characterized using an integral transform as entire functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we use a biorthogonal approach to the analysis of the infinite dimensional fractional Poisson measure $\pi_{\sigma}^{\beta}$, $0<\beta\leq1$, on the dual of Schwartz test function space $\mathcal{D}'$. The Hilbert space $L^{2}(\pi_{\sigma}^{\beta})$ of complex-valued functions is described in terms of a system of generalized Appell polynomials $\mathbb{P}^{\sigma,\beta,\alpha}$ associated to the measure $\pi_{\sigma}^{\beta}$. The kernels $C_{n}^{\sigma,\beta}(\cdot)$, $n\in\mathbb{N}_{0}$, of the monomials may be expressed in terms of the Stirling operators of the first and second kind as well as the falling factorials in infinite dimensions. Associated to the system $\mathbb{P}^{\sigma,\beta,\alpha}$, there is a generalized dual Appell system $\mathbb{Q}^{\sigma,\beta,\alpha}$ that is biorthogonal to $\mathbb{P}^{\sigma,\beta,\alpha}$. The test and generalized function spaces associated to the measure $\pi_{\sigma}^{\beta}$ are completely characterized using an integral transform as entire functions.
分享
查看原文
无限维分数泊松测度的双正交方法
本文用双正交的方法对线性空间$\mathcal{D}'$上的无限维分数泊松测度$\pi_{\sigma}^{\beta}$, $0<\beta\leq1$进行了分析。复值函数的希尔伯特空间$L^{2}(\pi_{\sigma}^{\beta})$是用与测度$\pi_{\sigma}^{\beta}$相关的广义阿佩尔多项式$\mathbb{P}^{\sigma,\beta,\alpha}$系统来描述的。单项式的核$C_{n}^{\sigma,\beta}(\cdot)$, $n\in\mathbb{N}_{0}$可以用无限维的第一类和第二类Stirling算子以及降阶乘来表示。与系统$\mathbb{P}^{\sigma,\beta,\alpha}$相关的是一个与$\mathbb{P}^{\sigma,\beta,\alpha}$双正交的广义对偶阿佩尔系统$\mathbb{Q}^{\sigma,\beta,\alpha}$。与测度$\pi_{\sigma}^{\beta}$相关的测试空间和广义函数空间使用积分变换完全表征为整个函数或全纯函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信