{"title":"Families of elliptic functions and uniformization of complex tori with a unique point over infinity","authors":"S. Nasyrov","doi":"10.15393/J3.ART.2018.5290","DOIUrl":null,"url":null,"abstract":". We investigate the problem of describing a one-para-metric family of elliptic functions which uniformizes a given family of ramified coverings of the Riemann sphere with maximal possible ramification over infinity. We find a PDE for the family of functions and use it to deduce a system of ODEs for their critical points.","PeriodicalId":41813,"journal":{"name":"Problemy Analiza-Issues of Analysis","volume":"6 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Analiza-Issues of Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15393/J3.ART.2018.5290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
. We investigate the problem of describing a one-para-metric family of elliptic functions which uniformizes a given family of ramified coverings of the Riemann sphere with maximal possible ramification over infinity. We find a PDE for the family of functions and use it to deduce a system of ODEs for their critical points.