The global optimization method with selective averaging of the discrete decision variables

Pub Date : 2020-02-01 DOI:10.17223/19988605/50/6
A. Rouban, A. Mikhalev
{"title":"The global optimization method with selective averaging of the discrete decision variables","authors":"A. Rouban, A. Mikhalev","doi":"10.17223/19988605/50/6","DOIUrl":null,"url":null,"abstract":"In the paper, the functional of selective averaging of discrete decision variables is proposed. The positive selectivity coefficient is entered into a positive decreasing kernel of functional and with growth of selectivity coefficient the mean gives optimum values (in a limit) of decision discrete variables in a problem of global optimization. Based on the estimate of the selective averaging functional, a basic global optimization algorithm is synthesized on a set of discrete variables with ordered possible values under inequality constraints. The basis is a computational scheme for optimizing continuous variables and its transformation for optimization with respect to discrete variables. On a test example the high convergence rate and a noise stability of base algorithm are shown. Simulations have shown that the estimate of the probability of making a true decision reaches unit.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988605/50/6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the paper, the functional of selective averaging of discrete decision variables is proposed. The positive selectivity coefficient is entered into a positive decreasing kernel of functional and with growth of selectivity coefficient the mean gives optimum values (in a limit) of decision discrete variables in a problem of global optimization. Based on the estimate of the selective averaging functional, a basic global optimization algorithm is synthesized on a set of discrete variables with ordered possible values under inequality constraints. The basis is a computational scheme for optimizing continuous variables and its transformation for optimization with respect to discrete variables. On a test example the high convergence rate and a noise stability of base algorithm are shown. Simulations have shown that the estimate of the probability of making a true decision reaches unit.
分享
查看原文
离散决策变量选择性平均的全局优化方法
本文提出了离散决策变量的选择性平均泛函。将正选择系数带入一个正递减的泛函核中,随着选择系数的增大,均值给出全局优化问题中决策离散变量的最优值(在一个极限内)。基于选择性平均泛函的估计,在不等式约束下,综合了一组可能值有序的离散变量的基本全局优化算法。其基础是连续变量优化的计算格式及其离散变量优化的变换。算例表明,基算法具有较高的收敛速度和较好的噪声稳定性。仿真结果表明,做出正确决策的概率估计达到了单位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信