Threshold functions for substructures in random subsets of finite vector spaces

IF 0.4 Q4 MATHEMATICS, APPLIED
Chang-Pao Chen, Catherine S. Greenhill
{"title":"Threshold functions for substructures in random subsets of finite vector spaces","authors":"Chang-Pao Chen, Catherine S. Greenhill","doi":"10.4310/joc.2021.v12.n1.a6","DOIUrl":null,"url":null,"abstract":"The study of substructures in random objects has a long history, beginning with Erdős and Renyi's work on subgraphs of random graphs. We study the existence of certain substructures in random subsets of vector spaces over finite fields. First we provide a general framework which can be applied to establish coarse threshold results and prove a limiting Poisson distribution at the threshold scale. To illustrate our framework we apply our results to $k$-term arithmetic progressions, sums, right triangles, parallelograms and affine planes. We also find coarse thresholds for the property that a random subset of a finite vector space is sum-free, or is a Sidon set.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"46 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2021.v12.n1.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The study of substructures in random objects has a long history, beginning with Erdős and Renyi's work on subgraphs of random graphs. We study the existence of certain substructures in random subsets of vector spaces over finite fields. First we provide a general framework which can be applied to establish coarse threshold results and prove a limiting Poisson distribution at the threshold scale. To illustrate our framework we apply our results to $k$-term arithmetic progressions, sums, right triangles, parallelograms and affine planes. We also find coarse thresholds for the property that a random subset of a finite vector space is sum-free, or is a Sidon set.
有限向量空间随机子集中子结构的阈值函数
随机对象子结构的研究历史悠久,始于Erdős和Renyi对随机图子图的研究。研究了有限域上向量空间随机子集中某些子结构的存在性。首先,我们提供了一个可用于建立粗阈值结果的一般框架,并证明了阈值尺度上的极限泊松分布。为了说明我们的框架,我们将结果应用于k项等差数列、和、直角三角形、平行四边形和仿射平面。我们还发现了有限向量空间的随机子集是无和的或者是西顿集的粗糙阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信