Symmetric group action of the birational $R$-matrix

IF 0.4 Q4 MATHEMATICS, APPLIED
Sunita Chepuri, Feiyang Lin
{"title":"Symmetric group action of the birational $R$-matrix","authors":"Sunita Chepuri, Feiyang Lin","doi":"10.4310/joc.2023.v14.n2.a4","DOIUrl":null,"url":null,"abstract":"The birational $R$-matrix is a transformation that appears in the theory of geometric crystals, the study of total positivity in loop groups, and discrete dynamical systems. This $R$-matrix gives rise to an action of the symmetric group $S_m$ on an $m$-tuple of vectors. While the birational $R$-matrix is precisely the formula corresponding to the action of the simple transposition $s_i$, explicit formulas for the action of other permutations are generally not known. One particular case was studied by Lam and Pylyavskyy as it relates to energy functions of crystals. In this paper, we will discuss formulas for several additional cases, including transpositions, and provide combinatorial interpretations for the functions that appear in our work.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"13 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2023.v14.n2.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The birational $R$-matrix is a transformation that appears in the theory of geometric crystals, the study of total positivity in loop groups, and discrete dynamical systems. This $R$-matrix gives rise to an action of the symmetric group $S_m$ on an $m$-tuple of vectors. While the birational $R$-matrix is precisely the formula corresponding to the action of the simple transposition $s_i$, explicit formulas for the action of other permutations are generally not known. One particular case was studied by Lam and Pylyavskyy as it relates to energy functions of crystals. In this paper, we will discuss formulas for several additional cases, including transpositions, and provide combinatorial interpretations for the functions that appear in our work.
双元R矩阵的对称群作用
birational R -矩阵是出现在几何晶体理论、环群总正性研究和离散动力系统中的一种变换。这个$R$-矩阵产生了对称群$S_m$对向量元组$m$的作用。虽然双象R -矩阵正是简单转置s_i作用的对应公式,但其他置换作用的显式公式通常是未知的。Lam和pylyavsky研究了一个特殊的例子,因为它与晶体的能量函数有关。在本文中,我们将讨论几种其他情况的公式,包括换位,并为我们工作中出现的函数提供组合解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信