Gamelan Demung Music Transcription Based on STFT Using Deep Learning

Andi Rokhman Hermawan, E. M. Yuniarno, D. Wulandari
{"title":"Gamelan Demung Music Transcription Based on STFT Using Deep Learning","authors":"Andi Rokhman Hermawan, E. M. Yuniarno, D. Wulandari","doi":"10.12962/jaree.v6i2.276","DOIUrl":null,"url":null,"abstract":"Learning to play a gamelan instrument would be easier when there’s a musical notation guide. The process of converting a musical signal into a notation guide is called transcription. In this paper, we would like to transcript the gamelan music especially the Demung instrument using the Deep Learning method. Each Demung’s note from 6-low until 1-high would be converted to the time-frequency domain using STFT (Short-Time Fourier Transform). Then, those data will be treated as an input for the multilayers perceptron. The training method is a single label of each notation. The output returned by the model is a music roll transcription.","PeriodicalId":32708,"journal":{"name":"JAREE Journal on Advanced Research in Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAREE Journal on Advanced Research in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/jaree.v6i2.276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning to play a gamelan instrument would be easier when there’s a musical notation guide. The process of converting a musical signal into a notation guide is called transcription. In this paper, we would like to transcript the gamelan music especially the Demung instrument using the Deep Learning method. Each Demung’s note from 6-low until 1-high would be converted to the time-frequency domain using STFT (Short-Time Fourier Transform). Then, those data will be treated as an input for the multilayers perceptron. The training method is a single label of each notation. The output returned by the model is a music roll transcription.
基于STFT深度学习的佳美兰Demung音乐转录
如果有乐谱指导,学习演奏佳美兰乐器会更容易。把音乐信号转换成乐谱的过程叫做抄写。在本文中,我们想要用深度学习的方法来记录佳美兰音乐,特别是Demung乐器。使用短时傅里叶变换(STFT)将从6-low到1-high的每个Demung音符转换为时频域。然后,这些数据将被视为多层感知器的输入。训练方法是每个符号的单个标签。模型返回的输出是一个音乐卷转录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信