{"title":"On complex modified Bernstein-Stancu operators","authors":"N. Çetin","doi":"10.3934/mfc.2021043","DOIUrl":null,"url":null,"abstract":"The present paper deals with complex form of a generalization of perturbed Bernstein-type operators. Quantitative upper estimates for simultaneous approximation, a qualitative Voronovskaja type result and the exact order of approximation by these operators attached to functions analytic in a disk centered at the origin with radius greater than 1 are obtained in this study.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2021043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The present paper deals with complex form of a generalization of perturbed Bernstein-type operators. Quantitative upper estimates for simultaneous approximation, a qualitative Voronovskaja type result and the exact order of approximation by these operators attached to functions analytic in a disk centered at the origin with radius greater than 1 are obtained in this study.