Statistical dependence and shape of Young tableau

4open Pub Date : 2023-01-01 DOI:10.1051/fopen/2023003
J. E. García, V. González-López, Maria Magdalena Kcala Alvaro
{"title":"Statistical dependence and shape of Young tableau","authors":"J. E. García, V. González-López, Maria Magdalena Kcala Alvaro","doi":"10.1051/fopen/2023003","DOIUrl":null,"url":null,"abstract":"Given two continuous random variables, X and Y, we study the relationship between their statistical dependence and the Young tableau of the permutation defined from the graph of a bivariate sample coming from (X, Y). From a sample of size n of (X, Y), we identify the Young tableau of the permutation which maps the ranks of the X observations on the ranks of the Y observations. Procedures to detect statistical dependence between pairs of random variables, based on statistics calculated on the permutation defined by the graph of a bivariate sample have been developed, see García and González-López (2020) [Symmetry 12, 9, 1415. https://doi.org/10.3390/sym12091415] and García and González-López (2014) [J Multivar Anal 127, 126–146. https://doi.org/10.1016/j.jmva.2014.02.010]. In those papers, the information used is the length of the longest increasing (decreasing) subsequence, identified as the first line (the first column) of the Young tableau of the permutation. In this paper, we expose the information captured by the shape of the Young tableau of the permutation.","PeriodicalId":6841,"journal":{"name":"4open","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/fopen/2023003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given two continuous random variables, X and Y, we study the relationship between their statistical dependence and the Young tableau of the permutation defined from the graph of a bivariate sample coming from (X, Y). From a sample of size n of (X, Y), we identify the Young tableau of the permutation which maps the ranks of the X observations on the ranks of the Y observations. Procedures to detect statistical dependence between pairs of random variables, based on statistics calculated on the permutation defined by the graph of a bivariate sample have been developed, see García and González-López (2020) [Symmetry 12, 9, 1415. https://doi.org/10.3390/sym12091415] and García and González-López (2014) [J Multivar Anal 127, 126–146. https://doi.org/10.1016/j.jmva.2014.02.010]. In those papers, the information used is the length of the longest increasing (decreasing) subsequence, identified as the first line (the first column) of the Young tableau of the permutation. In this paper, we expose the information captured by the shape of the Young tableau of the permutation.
杨表的统计依赖性和形状
给定两个连续随机变量X和Y,我们研究了它们的统计依赖性与来自(X, Y)的二元样本图定义的排列的Young表之间的关系。从(X, Y)的n个样本中,我们确定了排列的Young表,它将X观测值的秩映射到Y观测值的秩上。基于二元样本图定义的排列计算的统计量,已经开发了检测随机变量对之间统计相关性的程序,参见García和González-López (2020) [Symmetry 12,9,1415]。https://doi.org/10.3390/sym12091415]和García和González-López (2014) [J] .多变量分析,127,126-146。https://doi.org/10.1016/j.jmva.2014.02.010]。在这些论文中,使用的信息是最长的递增(递减)子序列的长度,即Young排列表的第一行(第一列)。在本文中,我们揭示了由排列的杨氏表的形状所捕获的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信