Optimal Geometry of Elliptical Target Localization

Na Zhao, Yunlong Wang, Rico Mendrzik, Yuanpeng Liu, Qing Chang, Yuan Shen
{"title":"Optimal Geometry of Elliptical Target Localization","authors":"Na Zhao, Yunlong Wang, Rico Mendrzik, Yuanpeng Liu, Qing Chang, Yuan Shen","doi":"10.1109/GCWkshps52748.2021.9682134","DOIUrl":null,"url":null,"abstract":"This letter unifies the optimal geometry analysis for elliptical target localization by a new notion called virtual agents (VAs), which allows the conversion of a bi-static time-of-arrival (TOA) measurement to a direct TOA measurement with equivalent Fisher information. Using the notion of VAs, we determine the optimal geometries with different types of measurements based on D-optimality. In particular, the optimal geometry is attained when the angles between transmitter-to-target and target-to-agent directions are ±π/3 for the TOA case, or the agents have an equal angular spacing around the target with equal ranging information intensity (RII) for the angle-of-arrival (AOA) case. Moreover, we also show that for the TOA/AOA fusion case, the optimal geometry occurs if the transmitter, agents, and target are collinear under both single-agent with arbitrary RII and multi-agent with identical RII between two measurements conditions. Finally, numerical results are given to validate our theoretical analysis.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"60 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9682134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This letter unifies the optimal geometry analysis for elliptical target localization by a new notion called virtual agents (VAs), which allows the conversion of a bi-static time-of-arrival (TOA) measurement to a direct TOA measurement with equivalent Fisher information. Using the notion of VAs, we determine the optimal geometries with different types of measurements based on D-optimality. In particular, the optimal geometry is attained when the angles between transmitter-to-target and target-to-agent directions are ±π/3 for the TOA case, or the agents have an equal angular spacing around the target with equal ranging information intensity (RII) for the angle-of-arrival (AOA) case. Moreover, we also show that for the TOA/AOA fusion case, the optimal geometry occurs if the transmitter, agents, and target are collinear under both single-agent with arbitrary RII and multi-agent with identical RII between two measurements conditions. Finally, numerical results are given to validate our theoretical analysis.
椭圆目标定位的最优几何
本文将椭圆目标定位的最优几何分析统一为一个新概念,称为虚拟代理(VAs),它允许将双静态到达时间(TOA)测量转换为具有等效Fisher信息的直接TOA测量。使用VAs的概念,我们基于d -最优性确定具有不同类型测量的最优几何形状。特别是,对于TOA情况,当发射器到目标方向和目标到智能体方向之间的夹角为±π/3时,或者对于到达角(AOA)情况,智能体在目标周围具有相等的角间距和相等的距离信息强度(RII)时,可以获得最佳的几何形状。此外,我们还表明,对于TOA/AOA融合情况,在具有任意RII的单智能体和具有相同RII的多智能体两种测量条件下,当发射器、智能体和目标共线时,会出现最优几何形状。最后给出数值结果验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信