A Class of Littlewood Polynomials that are Not Lα-Flat

E. Abdalaoui, M. Nadkarni
{"title":"A Class of Littlewood Polynomials that are Not Lα-Flat","authors":"E. Abdalaoui, M. Nadkarni","doi":"10.2478/udt-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract We exhibit a class of Littlewood polynomials that are not Lα-flat for any α ≥ 0. Indeed, it is shown that the sequence of Littlewood polynomials is not Lα-flat, α ≥ 0, when the frequency of −1 is not in the interval ] 14 {1 \\over 4} , 34 {3 \\over 4} [ We further obtain a generalization of Jensen-Jensen-Hoholdt’s result by establishing that the sequence of Littlewood polynomials is not Lα-flat for any α> 2 if the frequency of −1 is not 12 {1 \\over 2} . Finally, we prove that the sequence of palindromic Littlewood polynomials with even degrees are not Lα-flat for any α ≥ 0, and we provide a lemma on the existence of c-flat polynomials.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"90 1","pages":"51 - 74"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We exhibit a class of Littlewood polynomials that are not Lα-flat for any α ≥ 0. Indeed, it is shown that the sequence of Littlewood polynomials is not Lα-flat, α ≥ 0, when the frequency of −1 is not in the interval ] 14 {1 \over 4} , 34 {3 \over 4} [ We further obtain a generalization of Jensen-Jensen-Hoholdt’s result by establishing that the sequence of Littlewood polynomials is not Lα-flat for any α> 2 if the frequency of −1 is not 12 {1 \over 2} . Finally, we prove that the sequence of palindromic Littlewood polynomials with even degrees are not Lα-flat for any α ≥ 0, and we provide a lemma on the existence of c-flat polynomials.
一类非l α-平坦的Littlewood多项式
摘要我们证明了一类对于任意α≥0都不是l α-平坦的Littlewood多项式。事实上,证明了当- 1的频率不在14{1 \ / 4},34{3 \ / 4}区间内时,Littlewood多项式的序列不是l α-平坦的,α≥0。我们进一步推广了Jensen-Jensen-Hoholdt的结果,即当- 1的频率不在12{1 \ / 2}时,对于任何α> 2, Littlewood多项式的序列都不是l α-平坦的。最后,我们证明了偶数次的回文Littlewood多项式序列对于任意α≥0都不是l α-平坦的,并给出了c-平坦多项式存在的一个引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信