{"title":"A Class of Littlewood Polynomials that are Not Lα-Flat","authors":"E. Abdalaoui, M. Nadkarni","doi":"10.2478/udt-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract We exhibit a class of Littlewood polynomials that are not Lα-flat for any α ≥ 0. Indeed, it is shown that the sequence of Littlewood polynomials is not Lα-flat, α ≥ 0, when the frequency of −1 is not in the interval ] 14 {1 \\over 4} , 34 {3 \\over 4} [ We further obtain a generalization of Jensen-Jensen-Hoholdt’s result by establishing that the sequence of Littlewood polynomials is not Lα-flat for any α> 2 if the frequency of −1 is not 12 {1 \\over 2} . Finally, we prove that the sequence of palindromic Littlewood polynomials with even degrees are not Lα-flat for any α ≥ 0, and we provide a lemma on the existence of c-flat polynomials.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"90 1","pages":"51 - 74"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract We exhibit a class of Littlewood polynomials that are not Lα-flat for any α ≥ 0. Indeed, it is shown that the sequence of Littlewood polynomials is not Lα-flat, α ≥ 0, when the frequency of −1 is not in the interval ] 14 {1 \over 4} , 34 {3 \over 4} [ We further obtain a generalization of Jensen-Jensen-Hoholdt’s result by establishing that the sequence of Littlewood polynomials is not Lα-flat for any α> 2 if the frequency of −1 is not 12 {1 \over 2} . Finally, we prove that the sequence of palindromic Littlewood polynomials with even degrees are not Lα-flat for any α ≥ 0, and we provide a lemma on the existence of c-flat polynomials.