Motion Estimation via Scale-Space in Unsupervised Deep Learning

Jaehwan Kim, B. Derbel, Byung-Woo Hong
{"title":"Motion Estimation via Scale-Space in Unsupervised Deep Learning","authors":"Jaehwan Kim, B. Derbel, Byung-Woo Hong","doi":"10.1109/ICOIN50884.2021.9334004","DOIUrl":null,"url":null,"abstract":"We present a potential application of the conventional scale-space theory to the estimation of optical flow in the deep learning framework. An unsupervised learning scheme for the computation of optical flow is integrated with a Gaussian scale space. The hierarchical propagation of intermediate estimations via a consecutive scales demonstrates a potential in the course of optimization leading to a better local minimum. The landscape of loss function associated with an optical flow problem in a neural network framework is highly complex and non-convex, which requires to guild the optimization path in such a way that a solution at a plateau region. The qualitative comparison of the optical flow solutions via a Gaussian scale-space provides the characteristics of solutions at different scales, thus provides a way to take into consideration of scales in further improving accuracy.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"4 1","pages":"730-731"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9334004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a potential application of the conventional scale-space theory to the estimation of optical flow in the deep learning framework. An unsupervised learning scheme for the computation of optical flow is integrated with a Gaussian scale space. The hierarchical propagation of intermediate estimations via a consecutive scales demonstrates a potential in the course of optimization leading to a better local minimum. The landscape of loss function associated with an optical flow problem in a neural network framework is highly complex and non-convex, which requires to guild the optimization path in such a way that a solution at a plateau region. The qualitative comparison of the optical flow solutions via a Gaussian scale-space provides the characteristics of solutions at different scales, thus provides a way to take into consideration of scales in further improving accuracy.
基于尺度空间的无监督深度学习运动估计
我们提出了传统尺度空间理论在深度学习框架下对光流估计的潜在应用。将一种用于光流计算的无监督学习方案与高斯尺度空间相结合。通过连续尺度的中间估计的分层传播表明在优化过程中有可能导致更好的局部最小值。在神经网络框架中,与光流问题相关的损失函数景观是高度复杂的非凸问题,这就要求优化路径在平台区域具有解。通过高斯尺度空间对光流解进行定性比较,提供了不同尺度解的特征,从而为进一步提高精度提供了考虑尺度的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信