Bounded Relativization

Shuichi Hirahara, Zhenjian Lu, Hanlin Ren
{"title":"Bounded Relativization","authors":"Shuichi Hirahara, Zhenjian Lu, Hanlin Ren","doi":"10.4230/LIPIcs.CCC.2023.6","DOIUrl":null,"url":null,"abstract":"Relativization is one of the most fundamental concepts in complexity theory, which explains the difficulty of resolving major open problems. In this paper, we propose a weaker notion of relativization called bounded relativization . For a complexity class C , we say that a statement is C -relativizing if the statement holds relative to every oracle O ∈ C . It is easy to see that every result that relativizes also C -relativizes for every complexity class C . On the other hand, we observe that many non-relativizing results, such as IP = PSPACE , are in fact PSPACE -relativizing. First, we use the idea of bounded relativization to obtain new lower bound results, including the following nearly maximum circuit lower bound: for every constant ε > 0,","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"12 1","pages":"6:1-6:45"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2023.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Relativization is one of the most fundamental concepts in complexity theory, which explains the difficulty of resolving major open problems. In this paper, we propose a weaker notion of relativization called bounded relativization . For a complexity class C , we say that a statement is C -relativizing if the statement holds relative to every oracle O ∈ C . It is easy to see that every result that relativizes also C -relativizes for every complexity class C . On the other hand, we observe that many non-relativizing results, such as IP = PSPACE , are in fact PSPACE -relativizing. First, we use the idea of bounded relativization to obtain new lower bound results, including the following nearly maximum circuit lower bound: for every constant ε > 0,
有界的相对性
相对论是复杂性理论中最基本的概念之一,它解释了解决重大开放问题的困难。在本文中,我们提出了一个较弱的相对论概念,称为有界相对论。对于复杂度类C,如果一个语句相对于所有oracle O∈C都成立,我们说该语句是C相对化的。很容易看出,每一个相对化的结果对于每一个复杂度类都是相对化的。另一方面,我们观察到许多非相对化的结果,如IP = PSPACE,实际上是PSPACE相对化的。首先,我们利用有界相对论的思想得到了新的下界结果,包括以下近似最大电路下界:对于每一个常数ε > 0,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信