{"title":"Data Makes Better Data Scientists","authors":"Jinjin Zhao, A. Gal, Sanjay Krishnan","doi":"10.1145/3597465.3605228","DOIUrl":null,"url":null,"abstract":"With the goal of identifying common practices in data science projects, this paper proposes a framework for logging and understanding incremental code executions in Jupyter notebooks. This framework aims to allow reasoning about how insights are generated in data science and extract key observations into best data science practices in the wild. In this paper, we show an early prototype of this framework and ran an experiment to log a machine learning project for 25 undergraduate students.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597465.3605228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the goal of identifying common practices in data science projects, this paper proposes a framework for logging and understanding incremental code executions in Jupyter notebooks. This framework aims to allow reasoning about how insights are generated in data science and extract key observations into best data science practices in the wild. In this paper, we show an early prototype of this framework and ran an experiment to log a machine learning project for 25 undergraduate students.