{"title":"Classes of Hard Formulas for QBF Resolution","authors":"Agnes Schleitzer, Olaf Beyersdorff","doi":"10.4230/LIPIcs.SAT.2022.5","DOIUrl":null,"url":null,"abstract":"To date, we know only a few handcrafted quantified Boolean formulas (QBFs) that are hard for central QBF resolution systems such as Q-Res and QU-Res, and only one specific QBF family to separate Q-Res and QU-Res.\nHere we provide a general method to construct hard formulas for Q-Res and QU-Res. The construction uses simple propositional formulas (e.g. minimally unsatisfiable formulas) in combination with easy QBF gadgets (Σb2 formulas without constant winning strategies). This leads to a host of new hard formulas, including new classes of hard random QBFs.\nWe further present generic constructions for formulas separating Q-Res and QU-Res, and for separating Q-Res and LD-Q-Res.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"25 1","pages":"5:1-5:18"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SAT.2022.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To date, we know only a few handcrafted quantified Boolean formulas (QBFs) that are hard for central QBF resolution systems such as Q-Res and QU-Res, and only one specific QBF family to separate Q-Res and QU-Res.
Here we provide a general method to construct hard formulas for Q-Res and QU-Res. The construction uses simple propositional formulas (e.g. minimally unsatisfiable formulas) in combination with easy QBF gadgets (Σb2 formulas without constant winning strategies). This leads to a host of new hard formulas, including new classes of hard random QBFs.
We further present generic constructions for formulas separating Q-Res and QU-Res, and for separating Q-Res and LD-Q-Res.