{"title":"Hamiltonian multiform description of an integrable hierarchy","authors":"V. Caudrelier, Matteo Stoppato","doi":"10.1063/5.0012153","DOIUrl":null,"url":null,"abstract":"Motivated by the notion of Lagrangian multiforms, which provide a Lagrangian formulation of integrability, and by results of the authors on the role of covariant Hamiltonian formalism for integrable field theories, we propose the notion of Hamiltonian multiforms for integrable $1+1$-dimensional field theories. They provide the Hamiltonian counterpart of Lagrangian multiforms and encapsulate in a single object an arbitrary number of flows within an integrable hierarchy. For a given hierarchy, taking a Lagrangian multiform as starting point, we provide a systematic construction of a Hamiltonian multiform based on a generalisation of techniques of covariant Hamiltonian field theory. This also produces two other important objects: a symplectic multiform and the related multi-time Poisson bracket. They reduce to a multisymplectic form and the related covariant Poisson bracket if we restrict our attention to a single flow in the hierarchy. Our framework offers an alternative approach to define and derive conservation laws for a hierarchy. We illustrate our results on three examples: the potential Korteweg-de Vries hierarchy, the sine-Gordon hierarchy (in light cone coordinates) and the Ablowitz-Kaup-Newell-Segur hierarchy.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0012153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Motivated by the notion of Lagrangian multiforms, which provide a Lagrangian formulation of integrability, and by results of the authors on the role of covariant Hamiltonian formalism for integrable field theories, we propose the notion of Hamiltonian multiforms for integrable $1+1$-dimensional field theories. They provide the Hamiltonian counterpart of Lagrangian multiforms and encapsulate in a single object an arbitrary number of flows within an integrable hierarchy. For a given hierarchy, taking a Lagrangian multiform as starting point, we provide a systematic construction of a Hamiltonian multiform based on a generalisation of techniques of covariant Hamiltonian field theory. This also produces two other important objects: a symplectic multiform and the related multi-time Poisson bracket. They reduce to a multisymplectic form and the related covariant Poisson bracket if we restrict our attention to a single flow in the hierarchy. Our framework offers an alternative approach to define and derive conservation laws for a hierarchy. We illustrate our results on three examples: the potential Korteweg-de Vries hierarchy, the sine-Gordon hierarchy (in light cone coordinates) and the Ablowitz-Kaup-Newell-Segur hierarchy.