Blow-up results for damped wave equation with fractional Laplacian and non linear memory

Tayeb Hadj Kaddour, A. Hakem
{"title":"Blow-up results for damped wave equation with fractional Laplacian and non linear memory","authors":"Tayeb Hadj Kaddour, A. Hakem","doi":"10.24193/subbmath.2022.4.04","DOIUrl":null,"url":null,"abstract":"\"The goal of this paper is to study the nonexistence of nontrivial solutions of the following Cauchy problem $$\\left\\{ \\begin{array}{ll} u_{tt}+(-\\Delta)^{\\beta/2} u+u_{t}=\\displaystyle\\int_{0}^{t}\\left(t-\\tau \\right) ^{-\\gamma}\\left\\vert u(\\tau ,\\cdot) \\right\\vert^{p}d\\tau,\\\\ \\cr u(0,x)=u_{0}(x),\\quad u_t(0,x)=u_1(x),\\quad x\\in\\mathbb{R}^n, \\end{array}\\right.$$ where $p>1,\\ 0<\\gamma <1,\\,\\, \\beta\\in(0,2) $ and $(-\\Delta)^{\\beta/2} $ is the fractional Laplacian operator of order $\\frac{\\beta}{2}$. Our approach is based on the test function method.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.4.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

"The goal of this paper is to study the nonexistence of nontrivial solutions of the following Cauchy problem $$\left\{ \begin{array}{ll} u_{tt}+(-\Delta)^{\beta/2} u+u_{t}=\displaystyle\int_{0}^{t}\left(t-\tau \right) ^{-\gamma}\left\vert u(\tau ,\cdot) \right\vert^{p}d\tau,\\ \cr u(0,x)=u_{0}(x),\quad u_t(0,x)=u_1(x),\quad x\in\mathbb{R}^n, \end{array}\right.$$ where $p>1,\ 0<\gamma <1,\,\, \beta\in(0,2) $ and $(-\Delta)^{\beta/2} $ is the fractional Laplacian operator of order $\frac{\beta}{2}$. Our approach is based on the test function method."
具有分数阶拉普拉斯记忆和非线性记忆的阻尼波动方程的爆破结果
本文的目的是研究以下柯西问题$$\left\{ \begin{array}{ll} u_{tt}+(-\Delta)^{\beta/2} u+u_{t}=\displaystyle\int_{0}^{t}\left(t-\tau \right) ^{-\gamma}\left\vert u(\tau ,\cdot) \right\vert^{p}d\tau,\\ \cr u(0,x)=u_{0}(x),\quad u_t(0,x)=u_1(x),\quad x\in\mathbb{R}^n, \end{array}\right.$$的非平凡解的不存在性,其中$p>1,\ 0<\gamma <1,\,\, \beta\in(0,2) $和$(-\Delta)^{\beta/2} $是$\frac{\beta}{2}$阶的分数阶拉普拉斯算子。我们的方法是基于测试函数法。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
31 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信