Artificial Intelligence in Predicting Heart Failure

Rashid Ebrahim Al-Mannai, Mohammed Hamad Almerekhi, Mohammed Abdulla Al-Mannai, Mishahira N, K. K. Sadasivuni, H. Yalcin, H. Ouakad, I. Bahadur, S. Al-Maadeed, Asiya Albusaidi
{"title":"Artificial Intelligence in Predicting Heart Failure","authors":"Rashid Ebrahim Al-Mannai, Mohammed Hamad Almerekhi, Mohammed Abdulla Al-Mannai, Mishahira N, K. K. Sadasivuni, H. Yalcin, H. Ouakad, I. Bahadur, S. Al-Maadeed, Asiya Albusaidi","doi":"10.29117/quarfe.2021.0130","DOIUrl":null,"url":null,"abstract":"Heart Failure is a major chronic disease that is increasing day by day and a great health burden in health care systems world wide. Artificial intelligence (AI) techniques such as machine learning (ML), deep learning (DL), and cognitive computer can play a critical role in the early detection and diagnosis of Heart Failure Detection, as well as outcome prediction and prognosis evaluation. The availability of large datasets from difference sources can be leveraged to build machine learning models that can empower clinicians by providing early warnings and insightful information on the underlying conditions of the patients","PeriodicalId":9295,"journal":{"name":"Building Resilience at Universities: Role of Innovation and Entrepreneurship","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Resilience at Universities: Role of Innovation and Entrepreneurship","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29117/quarfe.2021.0130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heart Failure is a major chronic disease that is increasing day by day and a great health burden in health care systems world wide. Artificial intelligence (AI) techniques such as machine learning (ML), deep learning (DL), and cognitive computer can play a critical role in the early detection and diagnosis of Heart Failure Detection, as well as outcome prediction and prognosis evaluation. The availability of large datasets from difference sources can be leveraged to build machine learning models that can empower clinicians by providing early warnings and insightful information on the underlying conditions of the patients
人工智能预测心力衰竭
心力衰竭是一种日益增加的主要慢性疾病,是全世界卫生保健系统的一个重大健康负担。机器学习(ML)、深度学习(DL)、认知计算机等人工智能(AI)技术可以在心衰检测的早期发现和诊断,以及结局预测和预后评估中发挥关键作用。来自不同来源的大型数据集的可用性可以用来构建机器学习模型,通过提供早期预警和关于患者潜在状况的深刻信息,可以增强临床医生的能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信