{"title":"Equilibrium Conditions at a Solid-Solid Interface","authors":"JeeYeon Plohr","doi":"10.1155/2011/940385","DOIUrl":null,"url":null,"abstract":"We derive the thermodynamic conditions necessary for two elastoplastic solid phases to coexist in equilibrium. Beyond temperature, velocity, and traction continuity, these conditions require continuity of a generalization of the specific Gibbs free energy. We express this quantity in the Eulerian frame as well as the Lagrangian frame. We also show that two approaches in deriving the equilibrium conditions, one on the continuum level and the other on the atomistic scale, yield the same results. Finally, we discuss two possible interpretations for the Gibbs free energy, which lead to distinct generalizations, except in the case of inviscid fluids, where they coincide.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"3 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/940385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We derive the thermodynamic conditions necessary for two elastoplastic solid phases to coexist in equilibrium. Beyond temperature, velocity, and traction continuity, these conditions require continuity of a generalization of the specific Gibbs free energy. We express this quantity in the Eulerian frame as well as the Lagrangian frame. We also show that two approaches in deriving the equilibrium conditions, one on the continuum level and the other on the atomistic scale, yield the same results. Finally, we discuss two possible interpretations for the Gibbs free energy, which lead to distinct generalizations, except in the case of inviscid fluids, where they coincide.