Time scale discrete Fourier transforms

John M. Davis, I. Gravagne, R. Marks
{"title":"Time scale discrete Fourier transforms","authors":"John M. Davis, I. Gravagne, R. Marks","doi":"10.1109/SSST.2010.5442859","DOIUrl":null,"url":null,"abstract":"The discrete and continuous Fourier transforms are applicable to discrete and continuous time signals respectively. Time scales allows generalization to to any closed set of points on the real line. Discrete and continuous time are special cases. Using the Hilger exponential from time scale calculus, the discrete Fourier transform (DFT) is extended to signals on a set of points with arbitrary spacing. A time scale DN consisting of N points in time is shown to impose a time scale (more appropriately dubbed a frequency scale), DN, in the Fourier domain The time scale DFT's (TS-DFT's) are shown to share familiar properties of the DFT, including the derivative theorem and the power theorem. Shifting on a time scale is accomplished through a boxminus and boxplus operators. The shifting allows formulation of time scale convolution and correlation which, as is the case with the DFT, correspond to multiplication in the frequency domain.","PeriodicalId":6463,"journal":{"name":"2010 42nd Southeastern Symposium on System Theory (SSST)","volume":"8 1","pages":"102-110"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 42nd Southeastern Symposium on System Theory (SSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2010.5442859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The discrete and continuous Fourier transforms are applicable to discrete and continuous time signals respectively. Time scales allows generalization to to any closed set of points on the real line. Discrete and continuous time are special cases. Using the Hilger exponential from time scale calculus, the discrete Fourier transform (DFT) is extended to signals on a set of points with arbitrary spacing. A time scale DN consisting of N points in time is shown to impose a time scale (more appropriately dubbed a frequency scale), DN, in the Fourier domain The time scale DFT's (TS-DFT's) are shown to share familiar properties of the DFT, including the derivative theorem and the power theorem. Shifting on a time scale is accomplished through a boxminus and boxplus operators. The shifting allows formulation of time scale convolution and correlation which, as is the case with the DFT, correspond to multiplication in the frequency domain.
时间尺度离散傅里叶变换
离散傅里叶变换和连续傅里叶变换分别适用于离散时间信号和连续时间信号。时间尺度允许泛化到实线上的任何闭点集合。离散时间和连续时间是特殊情况。利用时间尺度微积分中的Hilger指数,将离散傅立叶变换(DFT)扩展到任意间隔点上的信号。由N个时间点组成的时间尺度DN在傅里叶域中施加时间尺度(更合适地称为频率尺度)DN,时间尺度DFT (TS-DFT)被证明具有DFT的熟悉性质,包括导数定理和幂定理。时间尺度上的移位是通过箱减和箱加算子完成的。移位允许时间尺度卷积和相关的公式,就像DFT的情况一样,对应于频域的乘法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信