Jooyeon Choi, Bora Jeong, Yesom Park, Jiwon Seo, Chohong Min
{"title":"AN OPTIMAL BOOSTING ALGORITHM BASED ON NONLINEAR CONJUGATE GRADIENT METHOD","authors":"Jooyeon Choi, Bora Jeong, Yesom Park, Jiwon Seo, Chohong Min","doi":"10.12941/JKSIAM.2018.22.001","DOIUrl":null,"url":null,"abstract":"ABSTRACT. Boosting, one of the most successful algorithms for supervised learning, searches the most accurate weighted sum of weak classifiers. The search corresponds to a convex programming with non-negativity and affine constraint. In this article, we propose a novel Conjugate Gradient algorithm with the Modified Polak-Ribiera-Polyak conjugate direction. The convergence of the algorithm is proved and we report its successful applications to boosting.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"16 1","pages":"1-13"},"PeriodicalIF":0.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2018.22.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT. Boosting, one of the most successful algorithms for supervised learning, searches the most accurate weighted sum of weak classifiers. The search corresponds to a convex programming with non-negativity and affine constraint. In this article, we propose a novel Conjugate Gradient algorithm with the Modified Polak-Ribiera-Polyak conjugate direction. The convergence of the algorithm is proved and we report its successful applications to boosting.