{"title":"A moving mesh finite difference method for non-monotone solutions of non-equilibrium equations in porous media","authors":"Hong Zhang, P. Zegeling","doi":"10.4208/cicp.OA-2016-0220","DOIUrl":null,"url":null,"abstract":"An adaptive moving mesh finite difference method is presented to solve two types of equations with dynamic capillary pressure term in porous media. One is the non-equilibrium Richards Equation and the other is the modified Buckley-Leverett equation. The governing equations are discretized with an adaptive moving mesh finite difference method in the space direction and an implicit-explicit method in the time direction. In order to obtain high quality meshes, an adaptive time-dependent monitor function with directional control is applied to redistribute the mesh grid in every time step, and a diffusive mechanism is used to smooth the monitor function. The behaviors of the central difference flux, the standard local Lax-Friedrich flux and the local Lax-Friedrich flux with reconstruction are investigated by solving a 1D modified Buckley-Leverett equation. With the moving mesh technique, good mesh quality and high numerical accuracy are obtained. A collection of one-dimensional and two-dimensional numerical experiments is presented to demonstrate the accuracy and effectiveness of the proposed method.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/cicp.OA-2016-0220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
An adaptive moving mesh finite difference method is presented to solve two types of equations with dynamic capillary pressure term in porous media. One is the non-equilibrium Richards Equation and the other is the modified Buckley-Leverett equation. The governing equations are discretized with an adaptive moving mesh finite difference method in the space direction and an implicit-explicit method in the time direction. In order to obtain high quality meshes, an adaptive time-dependent monitor function with directional control is applied to redistribute the mesh grid in every time step, and a diffusive mechanism is used to smooth the monitor function. The behaviors of the central difference flux, the standard local Lax-Friedrich flux and the local Lax-Friedrich flux with reconstruction are investigated by solving a 1D modified Buckley-Leverett equation. With the moving mesh technique, good mesh quality and high numerical accuracy are obtained. A collection of one-dimensional and two-dimensional numerical experiments is presented to demonstrate the accuracy and effectiveness of the proposed method.