Direct decompositions of groups of piecewise linear homeomorphisms of the unit interval

Takamichi Sato
{"title":"Direct decompositions of groups of piecewise linear homeomorphisms of the unit interval","authors":"Takamichi Sato","doi":"10.1142/s021819672250014x","DOIUrl":null,"url":null,"abstract":"We study subgroups of the group [Formula: see text] of piecewise linear orientation-preserving homeomorphisms of the unit interval [Formula: see text] that are differentiable everywhere except at finitely many real numbers, under the operation of composition. We provide a criterion for any two subgroups of [Formula: see text] which are direct products of finitely many indecomposable non-commutative groups to be non-isomorphic. As its application, we give a necessary and sufficient condition for any two subgroups of the R. Thompson group [Formula: see text] that are stabilizers of finite sets of numbers in the interval [Formula: see text] to be isomorphic, thus solving a problem by G. Golan and M. Sapir. We also show that if two stabilizers are isomorphic, then they are conjugate inside a certain group [Formula: see text].","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"12 1","pages":"289-305"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021819672250014x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study subgroups of the group [Formula: see text] of piecewise linear orientation-preserving homeomorphisms of the unit interval [Formula: see text] that are differentiable everywhere except at finitely many real numbers, under the operation of composition. We provide a criterion for any two subgroups of [Formula: see text] which are direct products of finitely many indecomposable non-commutative groups to be non-isomorphic. As its application, we give a necessary and sufficient condition for any two subgroups of the R. Thompson group [Formula: see text] that are stabilizers of finite sets of numbers in the interval [Formula: see text] to be isomorphic, thus solving a problem by G. Golan and M. Sapir. We also show that if two stabilizers are isomorphic, then they are conjugate inside a certain group [Formula: see text].
单位区间分段线性同胚群的直接分解
研究了单位区间分段线性保方向同纯群[公式:见文]的子群,这些子群在除有限多个实数外处处可微。我们给出了[公式:见文]的任意两个子群是非同构的判据,这两个子群是有限多个不可分解非交换群的直接乘积。作为其应用,我们给出了R. Thompson群[公式:见文]中任意两个子群是区间[公式:见文]有限数集的稳定子群同构的充分必要条件,从而解决了G. Golan和M. Sapir的一个问题。我们还证明了如果两个稳定剂是同构的,那么它们在某一群内是共轭的[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信