Parameter Optimized Event Detection for NILM Using Frequency Invariant Transformation of Periodic Signals (FIT-PS)

Pirmin Held, Daniel Weißhaar, S. Mauch, D. Abdeslam, Dirk Benyoucef
{"title":"Parameter Optimized Event Detection for NILM Using Frequency Invariant Transformation of Periodic Signals (FIT-PS)","authors":"Pirmin Held, Daniel Weißhaar, S. Mauch, D. Abdeslam, Dirk Benyoucef","doi":"10.1109/ETFA.2018.8502522","DOIUrl":null,"url":null,"abstract":"This paper describes the optimization of parameters of an event detection method for Non-Intrusive Load Monitoring (NILM). The input signal consisting of voltage and current was processed with FIT-PS. An event detection method is presented with regard to the adjustable parameters. For parameter optimization the methods simulated annealing and pattern search are used. By using automatic parameter optimization methods, previous results based on manually selected parameters can be significantly improved up to 11.5 %. In the runtime investigation, pattern search has clear advantages over simulated annealing for comparable or better results. In addition, it is possible in the future to adapt this method very quickly to other boundary conditions.","PeriodicalId":6566,"journal":{"name":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"13 1","pages":"832-837"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2018.8502522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the optimization of parameters of an event detection method for Non-Intrusive Load Monitoring (NILM). The input signal consisting of voltage and current was processed with FIT-PS. An event detection method is presented with regard to the adjustable parameters. For parameter optimization the methods simulated annealing and pattern search are used. By using automatic parameter optimization methods, previous results based on manually selected parameters can be significantly improved up to 11.5 %. In the runtime investigation, pattern search has clear advantages over simulated annealing for comparable or better results. In addition, it is possible in the future to adapt this method very quickly to other boundary conditions.
基于周期信号频率不变变换(FIT-PS)的NILM参数优化事件检测
本文介绍了一种非侵入式负荷监测(NILM)事件检测方法的参数优化。由电压和电流组成的输入信号用FIT-PS进行处理。提出了一种基于可调参数的事件检测方法。参数优化采用模拟退火和模式搜索两种方法。采用自动参数优化方法,可将以往基于人工选择参数的结果显著提高11.5%。在运行时调查中,模式搜索与模拟退火相比具有明显的优势,可以获得类似或更好的结果。此外,将来有可能使这种方法非常迅速地适应其他边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信