{"title":"On n-uniform Hjelmslev planes","authors":"David A. Drake","doi":"10.1016/S0021-9800(70)80066-7","DOIUrl":null,"url":null,"abstract":"<div><p>We define 1-<em>uniform</em> and <em>strongly</em> 1-<em>uniform</em> Hjelmslev planes (<em>H</em>-planes) to be the ordinary affine and projective planes. An <em>n-uniform H</em>-plane (<em>n</em>>1) is an <em>H</em>-plane whose point neighborhoods all are (<em>n</em>−1)-uniform affine <em>H</em>-planes. A <em>strongly n-uniform H</em>-plane (<em>n</em>>1) is an <em>n</em>-uniform projective <em>H</em>-plane which collapses to a strongly (<em>n</em>−1)-uniform <em>H</em>-plane upon identifying maximally connected points (points joined by <em>t</em> lines). All uniform projective <em>H</em>-planes are strongly <em>n</em>-uniform with <em>n</em>=1 or <em>n</em>=2. It is proved that all Desarguesian projective <em>H</em>-planes are strongly <em>n</em>-uniform. Many nice intersection properties are given for <em>n</em>-uniform <em>H</em>-planes; strongly <em>n</em>-uniform <em>H</em>-planes satisfy a strong intersection property called “property <em>A</em>.” It is proved that an <em>n</em>-uniform projective <em>H</em>-plane <em>π</em> is strongly <em>n</em>-uniform if and only if <em>π</em> satisfies property <em>A</em>, and also if and only if <em>π</em><sup>*</sup>, the dual of <em>π</em>, is <em>n</em>-uniform.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 3","pages":"Pages 267-288"},"PeriodicalIF":0.0000,"publicationDate":"1970-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80066-7","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
We define 1-uniform and strongly 1-uniform Hjelmslev planes (H-planes) to be the ordinary affine and projective planes. An n-uniform H-plane (n>1) is an H-plane whose point neighborhoods all are (n−1)-uniform affine H-planes. A strongly n-uniform H-plane (n>1) is an n-uniform projective H-plane which collapses to a strongly (n−1)-uniform H-plane upon identifying maximally connected points (points joined by t lines). All uniform projective H-planes are strongly n-uniform with n=1 or n=2. It is proved that all Desarguesian projective H-planes are strongly n-uniform. Many nice intersection properties are given for n-uniform H-planes; strongly n-uniform H-planes satisfy a strong intersection property called “property A.” It is proved that an n-uniform projective H-plane π is strongly n-uniform if and only if π satisfies property A, and also if and only if π*, the dual of π, is n-uniform.