A. Bourgoin, S. Bouquillon, Aurélien Hees, C. L. Poncin-Lafitte, Quentin G. Bailey, J. J. Howard, M. Angonin, G. Francou, Julien Chabé, Clément Courde, J.-M. Torre
{"title":"Constraining velocity-dependent Lorentz and \nCPT\n violations using lunar laser ranging","authors":"A. Bourgoin, S. Bouquillon, Aurélien Hees, C. L. Poncin-Lafitte, Quentin G. Bailey, J. J. Howard, M. Angonin, G. Francou, Julien Chabé, Clément Courde, J.-M. Torre","doi":"10.1103/PHYSREVD.103.064055","DOIUrl":null,"url":null,"abstract":"The possibility for Lorentz/CPT-breaking, which is motivated by unification theories, can be systematically tested within the standard-model extension framework. In the pure gravity sector, the mass dimension 5 operators produce new Lorentz and CPT-breaking terms in the 2-body equations of motion that depend on the relative velocity of the bodies. In this Letter, we report new constraints on 15 independent SME coefficients for Lorentz/CPT-violations with mass dimension 5 using lunar laser ranging. We perform a global analysis of lunar ranging data within the SME framework using more than 26,000 normal points between 1969 and 2018. We also perform a jackknife analysis in order to provide realistic estimates of the systematic uncertainties. No deviation from Lorentz/CPT symmetries is reported. In addition, when fitting simultaneously for the 15 canonical SME coefficients for Lorentz/CPT-violations, we improve up to three orders of magnitude previous post-fit constraints from radio pulsars.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.064055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The possibility for Lorentz/CPT-breaking, which is motivated by unification theories, can be systematically tested within the standard-model extension framework. In the pure gravity sector, the mass dimension 5 operators produce new Lorentz and CPT-breaking terms in the 2-body equations of motion that depend on the relative velocity of the bodies. In this Letter, we report new constraints on 15 independent SME coefficients for Lorentz/CPT-violations with mass dimension 5 using lunar laser ranging. We perform a global analysis of lunar ranging data within the SME framework using more than 26,000 normal points between 1969 and 2018. We also perform a jackknife analysis in order to provide realistic estimates of the systematic uncertainties. No deviation from Lorentz/CPT symmetries is reported. In addition, when fitting simultaneously for the 15 canonical SME coefficients for Lorentz/CPT-violations, we improve up to three orders of magnitude previous post-fit constraints from radio pulsars.