The Effect of Combinations of Carbon Nanomaterials on the Microhardness of the Chromium Galvanic Coating

M. Nasraoui, Yu. V. Litovka, V. Dolmatov
{"title":"The Effect of Combinations of Carbon Nanomaterials on the Microhardness of the Chromium Galvanic Coating","authors":"M. Nasraoui, Yu. V. Litovka, V. Dolmatov","doi":"10.17277/amt.2020.03.pp.056-063","DOIUrl":null,"url":null,"abstract":"A method to increase the microhardness of the chromium galvanic coating by adding a mixture of carbon nanomaterials (nanodiamonds, single-walled and multi-walled nanotubes, graphene oxide) into a standard chromium galvanic coating electrolyte was proposed. The increase in the microhardness of the chromium galvanic coating was revealed and explained. This is due to a combination of two mechanisms: the introduction of nanodiamonds into the crystal lattice of the coating metal and the appearance of additional crystallization centers on defects in carbon nanotubes. The method of obtaining parts with a higher service life when using traditional chromium galvanic coating, as well as when using multi-walled carbon nanotubes, single-walled carbon nanotubes, nanodiamonds, and graphene oxide separately, was demonstrated. The best result was obtained using a mixture of nanodiamonds and multi-walled carbon nanotubes. The microhardness of the nanomodified chromium galvanic coating was measured, and it was found to increase by 27 %.","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"30 1","pages":"056-063"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Journal of Advanced Materials and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17277/amt.2020.03.pp.056-063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A method to increase the microhardness of the chromium galvanic coating by adding a mixture of carbon nanomaterials (nanodiamonds, single-walled and multi-walled nanotubes, graphene oxide) into a standard chromium galvanic coating electrolyte was proposed. The increase in the microhardness of the chromium galvanic coating was revealed and explained. This is due to a combination of two mechanisms: the introduction of nanodiamonds into the crystal lattice of the coating metal and the appearance of additional crystallization centers on defects in carbon nanotubes. The method of obtaining parts with a higher service life when using traditional chromium galvanic coating, as well as when using multi-walled carbon nanotubes, single-walled carbon nanotubes, nanodiamonds, and graphene oxide separately, was demonstrated. The best result was obtained using a mixture of nanodiamonds and multi-walled carbon nanotubes. The microhardness of the nanomodified chromium galvanic coating was measured, and it was found to increase by 27 %.
碳纳米材料组合对铬电镀层显微硬度的影响
提出了一种通过在标准铬电镀层电解液中加入碳纳米材料(纳米金刚石、单壁和多壁纳米管、氧化石墨烯)的混合物来提高铬电镀层显微硬度的方法。揭示并解释了铬电镀层显微硬度升高的原因。这是由于两种机制的结合:将纳米金刚石引入涂层金属的晶格中,以及在碳纳米管缺陷上出现额外的结晶中心。演示了采用传统的铬电镀层,以及分别使用多壁碳纳米管、单壁碳纳米管、纳米金刚石和氧化石墨烯时获得更高使用寿命的方法。使用纳米金刚石和多壁碳纳米管的混合物获得了最好的效果。测定了纳米铬电镀层的显微硬度,发现镀层的显微硬度提高了27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信