Convergence of a particle approximation for the quasi-stationary distribution of a diffusion process: uniform estimates in a compact soft case. p, li { white-space: pre-wrap; }

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Lucas Journel, Pierre Monmarch'e
{"title":"Convergence of a particle approximation for the quasi-stationary distribution of a diffusion process: uniform estimates in a compact soft case.\n\n\np, li { white-space: pre-wrap; }","authors":"Lucas Journel, Pierre Monmarch'e","doi":"10.1051/ps/2021017","DOIUrl":null,"url":null,"abstract":"We establish the convergences (with respect to the simulation time $t$; the number of particles $N$; the timestep $\\gamma$) of a Moran/Fleming-Viot type particle scheme toward the quasi-stationary distribution of a diffusion on the $d$-dimensional torus, killed at a smooth rate. In these conditions, quantitative bounds are obtained that, for each parameter ($t\\rightarrow \\infty$, $N\\rightarrow \\infty$ or $\\gamma\\rightarrow 0$) are independent from the two others.\n\n\np, li { white-space: pre-wrap; }","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"7 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2021017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

Abstract

We establish the convergences (with respect to the simulation time $t$; the number of particles $N$; the timestep $\gamma$) of a Moran/Fleming-Viot type particle scheme toward the quasi-stationary distribution of a diffusion on the $d$-dimensional torus, killed at a smooth rate. In these conditions, quantitative bounds are obtained that, for each parameter ($t\rightarrow \infty$, $N\rightarrow \infty$ or $\gamma\rightarrow 0$) are independent from the two others. p, li { white-space: pre-wrap; }
扩散过程准平稳分布的粒子逼近的收敛性:紧软情况下的均匀估计。P, li{空格:prewrap;}
我们建立了收敛性(关于仿真时间$t$;粒子数$N$;一个Moran/Fleming-Viot型粒子方案的时间步长$\gamma$)在$d$维环面上以平滑速率扩散的准平稳分布。在这些条件下,得到了每个参数($t\rightarrow \infty$, $N\rightarrow \infty$或$\gamma\rightarrow 0$)独立于其他两个参数的定量界限。P、li{: pre-wrap;}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Esaim-Probability and Statistics
Esaim-Probability and Statistics STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains. Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics. Long papers are very welcome. Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信