{"title":"Opening up the court: analyzing player performance across tennis Grand Slams","authors":"Shannon K. Gallagher, K. Frisoli, Amanda Luby","doi":"10.1515/jqas-2019-0015","DOIUrl":null,"url":null,"abstract":"Abstract In tennis, the Australian Open, French Open, Wimbledon, and US Open are the four most prestigious events (Grand Slams). These four Grand Slams differ in the composition of the court surfaces, when they are played in the year, and which city hosts the players. Individual Grand Slams come with different expectations, and it is often thought that some players achieve better results at some Grand Slams than others. It is also thought that differences in results may be attributed, at least partially, to surface type of the courts. For example, Rafael Nadal, Roger Federer, and Serena Williams have achieved their best results on clay, grass, and hard courts, respectively. This paper explores differences among Grand Slams, while adjusting for confounders such as tour, competitor strength, and player attributes. More specifically, we examine the effect of the Grand Slam on player performance for matches from 2013 to 2019. We take two approaches to modeling these data: (1) a mixed-effects model accounting for both player and tournament features and (2) models that emphasize individual performance. We identify differences across the Grand Slams at both the tournament and individual player level.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"24 1","pages":"255 - 271"},"PeriodicalIF":1.1000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2019-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In tennis, the Australian Open, French Open, Wimbledon, and US Open are the four most prestigious events (Grand Slams). These four Grand Slams differ in the composition of the court surfaces, when they are played in the year, and which city hosts the players. Individual Grand Slams come with different expectations, and it is often thought that some players achieve better results at some Grand Slams than others. It is also thought that differences in results may be attributed, at least partially, to surface type of the courts. For example, Rafael Nadal, Roger Federer, and Serena Williams have achieved their best results on clay, grass, and hard courts, respectively. This paper explores differences among Grand Slams, while adjusting for confounders such as tour, competitor strength, and player attributes. More specifically, we examine the effect of the Grand Slam on player performance for matches from 2013 to 2019. We take two approaches to modeling these data: (1) a mixed-effects model accounting for both player and tournament features and (2) models that emphasize individual performance. We identify differences across the Grand Slams at both the tournament and individual player level.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.