{"title":"Development of seismicity and probabilistic hazard assessment for the Groningen gas field","authors":"B. Dost, E. Ruigrok, J. Spetzler","doi":"10.1017/njg.2017.20","DOIUrl":null,"url":null,"abstract":"Abstract The increase in number and strength of shallow induced seismicity connected to the Groningen gas field since 2003 and the occurrence of a M L 3.6 event in 2012 started the development of a full probabilistic seismic hazard assessment (PSHA) for Groningen, required by the regulator. Densification of the monitoring network resulted in a decrease of the location threshold and magnitude of completeness down to ~ M L=0.5. Combined with a detailed local velocity model, epicentre accuracy could be reduced from 0.5–1km to 0.1–0.3km and a vertical resolution ~0.3km. Time-dependent seismic activity is observed and taken into account into PSHA calculations. Development of the Ground Motion Model for Groningen resulted in a significant reduction of the hazard. Comparison of different implementations of the PSHA, using different source models, based on either a compaction model and production scenarios or on extrapolation of past seismicity, and methods of calculation, shows similar results.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"28 1","pages":"s235 - s245"},"PeriodicalIF":1.6000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/njg.2017.20","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 64
Abstract
Abstract The increase in number and strength of shallow induced seismicity connected to the Groningen gas field since 2003 and the occurrence of a M L 3.6 event in 2012 started the development of a full probabilistic seismic hazard assessment (PSHA) for Groningen, required by the regulator. Densification of the monitoring network resulted in a decrease of the location threshold and magnitude of completeness down to ~ M L=0.5. Combined with a detailed local velocity model, epicentre accuracy could be reduced from 0.5–1km to 0.1–0.3km and a vertical resolution ~0.3km. Time-dependent seismic activity is observed and taken into account into PSHA calculations. Development of the Ground Motion Model for Groningen resulted in a significant reduction of the hazard. Comparison of different implementations of the PSHA, using different source models, based on either a compaction model and production scenarios or on extrapolation of past seismicity, and methods of calculation, shows similar results.
期刊介绍:
Netherlands Journal of Geosciences - Geologie en Mijnbouw is a fully open access journal which publishes papers on all aspects of geoscience, providing they are of international interest and quality. As the official publication of the ''Netherlands Journal of Geosciences'' Foundation the journal publishes new and significant research in geosciences with a regional focus on the Netherlands, the North Sea region and relevant adjacent areas. A wide range of topics within the geosciences are covered in the journal, including "geology, physical geography, geophyics, (geo-)archeology, paleontology, hydro(geo)logy, hydrocarbon exploration, modelling and visualisation."
The journal is a continuation of Geologie and Mijnbouw (published by the Royal Geological and Mining Society of the Netherlands, KNGMG) and Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen (published by TNO Geological Survey of the Netherlands). The journal is published in full colour.