{"title":"Coupled eigenfunction expansion–boundary element method for wave scattering by thick vertical barrier over an arbitrary seabed","authors":"A. Choudhary, S. Koley, S. C. Martha","doi":"10.1080/03091929.2020.1743989","DOIUrl":null,"url":null,"abstract":"Wave structure interaction problem having thick vertical barrier over an arbitrary seabed is analysed for its solution. The associated boundary value problem is handled using a coupled eigenfunction expansion–boundary element method. This method converts the boundary value problem into integral equation over the physical boundaries. The physical boundaries are discretised into a finite number of elements and hence the integral equation give rise to a system of linear algebraic equations. Finally, the system of equations is solved to obtain the physical quantities, namely, the reflection and transmission coefficients. For ensuring the correctness of these physical quantities, the energy balance relation is derived and verified. The present results are also verified by comparing the results available in the literature. The present study reveals that the width and height of the structure along with the undulated seabed play an important role to construct an effective wave barrier to protect various marine facilities from wave attack and also helpful to create the tranquility zone on the lee side of the structure.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"15 1","pages":"44 - 60"},"PeriodicalIF":1.1000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1743989","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
Wave structure interaction problem having thick vertical barrier over an arbitrary seabed is analysed for its solution. The associated boundary value problem is handled using a coupled eigenfunction expansion–boundary element method. This method converts the boundary value problem into integral equation over the physical boundaries. The physical boundaries are discretised into a finite number of elements and hence the integral equation give rise to a system of linear algebraic equations. Finally, the system of equations is solved to obtain the physical quantities, namely, the reflection and transmission coefficients. For ensuring the correctness of these physical quantities, the energy balance relation is derived and verified. The present results are also verified by comparing the results available in the literature. The present study reveals that the width and height of the structure along with the undulated seabed play an important role to construct an effective wave barrier to protect various marine facilities from wave attack and also helpful to create the tranquility zone on the lee side of the structure.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.