Exponential state estimation for reaction-diffusion inertial neural networks via incomplete measurement scheme

Q2 Engineering
Xuemei Wang, Xiaona Song, Jingtao Man, Nana Wu
{"title":"Exponential state estimation for reaction-diffusion inertial neural networks via incomplete measurement scheme","authors":"Xuemei Wang, Xiaona Song, Jingtao Man, Nana Wu","doi":"10.1080/23335777.2021.2014978","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, the problem of exponential state estimation for inertial neural networks with reaction-diffusion term (RDINNs) via incomplete measurement scheme is investigated. Unlike the full measurement method, this method estimates the system by measuring the state of partially available neurons. First, by constructing an appropriate variable substitution, the second-order system is transformed into a first-order one. Then, a suitable Lyapunov-krasovskii function (LKF) is constructed, and sufficient conditions for the stability of the system are obtained . Finally, the practicality and effectiveness of the proposed method is further verified by two numerical examples.","PeriodicalId":37058,"journal":{"name":"Cyber-Physical Systems","volume":"49 1","pages":"357 - 375"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335777.2021.2014978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In this paper, the problem of exponential state estimation for inertial neural networks with reaction-diffusion term (RDINNs) via incomplete measurement scheme is investigated. Unlike the full measurement method, this method estimates the system by measuring the state of partially available neurons. First, by constructing an appropriate variable substitution, the second-order system is transformed into a first-order one. Then, a suitable Lyapunov-krasovskii function (LKF) is constructed, and sufficient conditions for the stability of the system are obtained . Finally, the practicality and effectiveness of the proposed method is further verified by two numerical examples.
反应-扩散惯性神经网络不完全测量的指数状态估计
研究了不完全测量方法下具有反应扩散项的惯性神经网络的指数状态估计问题。与完全测量方法不同,该方法通过测量部分可用神经元的状态来估计系统。首先,通过构造适当的变量代换,将二阶系统转化为一阶系统。然后构造了一个合适的Lyapunov-krasovskii函数(LKF),得到了系统稳定的充分条件。最后,通过两个算例进一步验证了所提方法的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cyber-Physical Systems
Cyber-Physical Systems Engineering-Computational Mechanics
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信