An integral approach to simulate three-dimensional flow in and around a ventilated U-shaped chironomid dwelled burrow

IF 4.6 Q2 ENVIRONMENTAL SCIENCES
Vahid Sobhi Gollo, Tabea Broecker, J. Lewandowski, G. Nützmann, R. Hinkelmann
{"title":"An integral approach to simulate three-dimensional flow in and around a ventilated U-shaped chironomid dwelled burrow","authors":"Vahid Sobhi Gollo, Tabea Broecker, J. Lewandowski, G. Nützmann, R. Hinkelmann","doi":"10.1080/24705357.2021.1938258","DOIUrl":null,"url":null,"abstract":"Abstract Tube dwelling of chironomids often dominates benthic communities in freshwater ecosystems with high population density and pumping rates. This strongly enhances exchange across the sediment-water interface and impacts biogeochemical processes. Such processes are investigated by tracking the flow initiated by chironomid’s pumping through and around burrows using laboratory and computer models. We used modeling and experimental results of other authors considering U-shaped burrows embedded in the sediment to improve process-understanding and prove the plausibility of an integral modeling approach. In contrast to coupled models of pipe (burrow), surface water (overlying water column) and groundwater flow (surrounding sediment), we present a novel high-resolution integral formulation for the porous medium-surface water domain (called porousInter as part of OpenFOAM (Open Field Operation and Manipulation)). This approach solves the extended version of the Navier-Stokes equations allowing simultaneous flow simulation in the burrow, the overlying water column and the surrounding sediment to better account for feedback effects between the sediment and surface water. Using similar model setup as of a coupled approach, we performed scenarios of flow through burrow and sediment triggered by pumping in the center of the burrow. Plausible agreement of our integral model with results of a coupled model and experimental results was obtained when comparing flow patterns around the burrows, between two burrow branches and at burrow inlet and outlet.","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"12 1","pages":"133 - 143"},"PeriodicalIF":4.6000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ecohydraulics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705357.2021.1938258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Tube dwelling of chironomids often dominates benthic communities in freshwater ecosystems with high population density and pumping rates. This strongly enhances exchange across the sediment-water interface and impacts biogeochemical processes. Such processes are investigated by tracking the flow initiated by chironomid’s pumping through and around burrows using laboratory and computer models. We used modeling and experimental results of other authors considering U-shaped burrows embedded in the sediment to improve process-understanding and prove the plausibility of an integral modeling approach. In contrast to coupled models of pipe (burrow), surface water (overlying water column) and groundwater flow (surrounding sediment), we present a novel high-resolution integral formulation for the porous medium-surface water domain (called porousInter as part of OpenFOAM (Open Field Operation and Manipulation)). This approach solves the extended version of the Navier-Stokes equations allowing simultaneous flow simulation in the burrow, the overlying water column and the surrounding sediment to better account for feedback effects between the sediment and surface water. Using similar model setup as of a coupled approach, we performed scenarios of flow through burrow and sediment triggered by pumping in the center of the burrow. Plausible agreement of our integral model with results of a coupled model and experimental results was obtained when comparing flow patterns around the burrows, between two burrow branches and at burrow inlet and outlet.
一种模拟通风的u形摇锥蜗居洞内及其周围三维流动的积分方法
摘要在淡水生态系统中,筒栖动物往往占底栖动物群落的主导地位,种群密度高,抽水率高。这极大地促进了沉积物-水界面的交换,并影响了生物地球化学过程。利用实验室和计算机模型,通过跟踪chironomid泵送通过洞穴和洞穴周围所引发的流动来研究这些过程。我们使用了其他作者考虑u形洞穴嵌入沉积物的建模和实验结果,以提高对过程的理解,并证明了整体建模方法的可行性。与管道(洞穴),地表水(上覆水柱)和地下水流动(周围沉积物)的耦合模型相反,我们提出了多孔介质-地表水域的新型高分辨率积分公式(称为porousInter,作为OpenFOAM(开放现场操作和操作)的一部分)。这种方法解决了Navier-Stokes方程的扩展版本,允许同时模拟洞穴、上覆水柱和周围沉积物的流动,以更好地解释沉积物和地表水之间的反馈效应。采用与耦合方法相似的模型设置,我们执行了通过洞穴的水流和由洞穴中心泵送引发的沉积物的场景。通过对洞穴周围、两个洞穴分支之间以及洞穴入口和出口的流动模式进行比较,得到了与耦合模型结果和实验结果较为一致的积分模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信