Y. Shi, X. Liu, Z. Liu, Huanjian Xie, Y. Wang, J. Li
{"title":"Effect of Zn content on corrosion behavior of Mg-Y-Zn alloys","authors":"Y. Shi, X. Liu, Z. Liu, Huanjian Xie, Y. Wang, J. Li","doi":"10.2298/jmmb210525048s","DOIUrl":null,"url":null,"abstract":"The microstructure, corrosion behavior and electrochemical behavior of as-cast Mg-4Y-xZn (x=1,2,3,4 wt.%) are studied by SEM, weight loss and electrochemical tests. Mg12YZn (X), Mg3Y2Zn3 (W) and Mg24Y5 constitute the phase composition system of the alloy. When Zn content is 1 wt.%, all tests reveal that alloy has the optimal corrosion performance. The second phase in these alloys, due to their nobler nature than ?-Mg, exists as cathode during corrosion process, so that ?-Mg preferentially occurs corrosion to accelerate the formation of corrosion pits. After soaking in 3.5 wt.% NaCl solution for some time, the stability of the W phase changed, and gradually dissolved, which was finally removed by chromic acid used for removal of corrosion products. In addition, X phase can be used as an anode in the micro-galvanic cells formed with W phase to reduce the corrosion rate of ?-Mg and thus improve the corrosion performance of the alloy.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"15 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb210525048s","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructure, corrosion behavior and electrochemical behavior of as-cast Mg-4Y-xZn (x=1,2,3,4 wt.%) are studied by SEM, weight loss and electrochemical tests. Mg12YZn (X), Mg3Y2Zn3 (W) and Mg24Y5 constitute the phase composition system of the alloy. When Zn content is 1 wt.%, all tests reveal that alloy has the optimal corrosion performance. The second phase in these alloys, due to their nobler nature than ?-Mg, exists as cathode during corrosion process, so that ?-Mg preferentially occurs corrosion to accelerate the formation of corrosion pits. After soaking in 3.5 wt.% NaCl solution for some time, the stability of the W phase changed, and gradually dissolved, which was finally removed by chromic acid used for removal of corrosion products. In addition, X phase can be used as an anode in the micro-galvanic cells formed with W phase to reduce the corrosion rate of ?-Mg and thus improve the corrosion performance of the alloy.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.