Bayesian Operational Risk Models

IF 0.4 4区 经济学 Q4 BUSINESS, FINANCE
Silvia Figini, Lijun Gao, Paolo Giudici
{"title":"Bayesian Operational Risk Models","authors":"Silvia Figini, Lijun Gao, Paolo Giudici","doi":"10.21314/JOP.2015.155","DOIUrl":null,"url":null,"abstract":"Operational risk is hard to quantify, for the presence of heavy tailed loss distributions. Extreme value distributions, used in this context, are very sensitive to the data, and this is a problem in the presence of rare loss data. Self risk assessment questionnaires, if properly modelled, may provide the missing piece of information that is necessary to adequately estimate op- erational risks. In this paper we propose to embody self risk assessment data into suitable prior distributions, and to follow a Bayesian approach to merge self assessment with loss data. We derive operational loss posterior distribu- tions, from which appropriate measures of risk, such as the Value at Risk, or the Expected Shortfall, can be derived. We test our proposed models on a real database, made up of internal loss data and self risk assessment questionnaires of an anonymous commercial bank. Our results show that the proposed Bayesian models performs better with respect to classical extreme value models, leading to a smaller quantification of the Value at Risk required to cover unexpected losses.","PeriodicalId":54030,"journal":{"name":"Journal of Operational Risk","volume":"38 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Risk","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JOP.2015.155","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 14

Abstract

Operational risk is hard to quantify, for the presence of heavy tailed loss distributions. Extreme value distributions, used in this context, are very sensitive to the data, and this is a problem in the presence of rare loss data. Self risk assessment questionnaires, if properly modelled, may provide the missing piece of information that is necessary to adequately estimate op- erational risks. In this paper we propose to embody self risk assessment data into suitable prior distributions, and to follow a Bayesian approach to merge self assessment with loss data. We derive operational loss posterior distribu- tions, from which appropriate measures of risk, such as the Value at Risk, or the Expected Shortfall, can be derived. We test our proposed models on a real database, made up of internal loss data and self risk assessment questionnaires of an anonymous commercial bank. Our results show that the proposed Bayesian models performs better with respect to classical extreme value models, leading to a smaller quantification of the Value at Risk required to cover unexpected losses.
贝叶斯操作风险模型
由于存在重尾损失分布,操作风险很难量化。在这种情况下使用的极值分布对数据非常敏感,这在存在罕见丢失数据的情况下是一个问题。自我风险评估问卷,如果适当建模,可以提供必要的信息,以充分估计操作风险的缺失部分。在本文中,我们提出将自我风险评估数据体现到合适的先验分布中,并遵循贝叶斯方法将自我评估与损失数据合并。我们推导出经营损失后验分布,从中可以推导出适当的风险度量,如风险价值或预期损失。我们在一个真实的数据库上测试了我们提出的模型,该数据库由一家匿名商业银行的内部损失数据和自我风险评估问卷组成。我们的研究结果表明,与经典的极值模型相比,所提出的贝叶斯模型表现得更好,从而可以更小地量化覆盖意外损失所需的风险值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Operational Risk
Journal of Operational Risk BUSINESS, FINANCE-
CiteScore
1.00
自引率
40.00%
发文量
6
期刊介绍: In December 2017, the Basel Committee published the final version of its standardized measurement approach (SMA) methodology, which will replace the approaches set out in Basel II (ie, the simpler standardized approaches and advanced measurement approach (AMA) that allowed use of internal models) from January 1, 2022. Independently of the Basel III rules, in order to manage and mitigate risks, they still need to be measurable by anyone. The operational risk industry needs to keep that in mind. While the purpose of the now defunct AMA was to find out the level of regulatory capital to protect a firm against operational risks, we still can – and should – use models to estimate operational risk economic capital. Without these, the task of managing and mitigating capital would be incredibly difficult. These internal models are now unshackled from regulatory requirements and can be optimized for managing the daily risks to which financial institutions are exposed. In addition, operational risk models can and should be used for stress tests and Comprehensive Capital Analysis and Review (CCAR). The Journal of Operational Risk also welcomes papers on nonfinancial risks as well as topics including, but not limited to, the following. The modeling and management of operational risk. Recent advances in techniques used to model operational risk, eg, copulas, correlation, aggregate loss distributions, Bayesian methods and extreme value theory. The pricing and hedging of operational risk and/or any risk transfer techniques. Data modeling external loss data, business control factors and scenario analysis. Models used to aggregate different types of data. Causal models that link key risk indicators and macroeconomic factors to operational losses. Regulatory issues, such as Basel II or any other local regulatory issue. Enterprise risk management. Cyber risk. Big data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信