The Kolmogorov Birthday Paradox

Samuel Epstein
{"title":"The Kolmogorov Birthday Paradox","authors":"Samuel Epstein","doi":"10.48550/arXiv.2208.11237","DOIUrl":null,"url":null,"abstract":"We prove a Kolmogorov complexity variant of the birthday paradox. Sufficiently sized random subsets of strings are guaranteed to have two members x and y with low K(x/y). To prove this, we first show that the minimum conditional Kolmogorov complexity between members of finite sets is very low if they are not exotic. Exotic sets have high mutual information with the halting sequence.","PeriodicalId":23063,"journal":{"name":"Theor. Comput. Sci.","volume":"19 1","pages":"113964"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.11237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a Kolmogorov complexity variant of the birthday paradox. Sufficiently sized random subsets of strings are guaranteed to have two members x and y with low K(x/y). To prove this, we first show that the minimum conditional Kolmogorov complexity between members of finite sets is very low if they are not exotic. Exotic sets have high mutual information with the halting sequence.
柯尔莫哥洛夫生日悖论
我们证明了生日悖论的Kolmogorov复杂度变体。字符串的足够大的随机子集保证有两个成员x和y具有低K(x/y)。为了证明这一点,我们首先证明了有限集合的成员之间的最小条件Kolmogorov复杂度非常低,如果它们不是奇异的。奇异集与停止序列具有较高的互信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信