Feasibility of personalized nonparametric analytics for predictive monitoring of heart failure patients using continuous mobile telemetry

R. M. Pipke, S. Wegerich, A. Saidi, J. Stehlik
{"title":"Feasibility of personalized nonparametric analytics for predictive monitoring of heart failure patients using continuous mobile telemetry","authors":"R. M. Pipke, S. Wegerich, A. Saidi, J. Stehlik","doi":"10.1145/2534088.2534107","DOIUrl":null,"url":null,"abstract":"Nonparametric model-based analytics personalized to the physiology of each patient are investigated for predictive monitoring of exacerbation in heart failure patients at home. Multivariate vital sign data are provided by means of continuous bio-signal acquisition with a mobile phone-based wearable sensor system worn by patients for several hours a day in the home ambulatory environment. Perturbation analysis demonstrates that individual patient physiological behavior is indeed effectively learned by the analytics, with high sensitivity to changes in physiological dynamics. Comparison of the analytics results with absence of unplanned medical events and self-reported wellness during regular patient follow-up demonstrate a very low false alert burden, suggesting this approach is efficient for remote clinical surveillance.","PeriodicalId":91386,"journal":{"name":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","volume":"37 1","pages":"7:1-7:8"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534088.2534107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Nonparametric model-based analytics personalized to the physiology of each patient are investigated for predictive monitoring of exacerbation in heart failure patients at home. Multivariate vital sign data are provided by means of continuous bio-signal acquisition with a mobile phone-based wearable sensor system worn by patients for several hours a day in the home ambulatory environment. Perturbation analysis demonstrates that individual patient physiological behavior is indeed effectively learned by the analytics, with high sensitivity to changes in physiological dynamics. Comparison of the analytics results with absence of unplanned medical events and self-reported wellness during regular patient follow-up demonstrate a very low false alert burden, suggesting this approach is efficient for remote clinical surveillance.
使用连续移动遥测技术对心力衰竭患者进行预测性监测的个性化非参数分析的可行性
对每位患者的生理个性化的基于非参数模型的分析进行了研究,以预测监测心力衰竭患者在家中的恶化情况。多元生命体征数据是通过基于移动电话的可穿戴传感器系统连续采集生物信号来提供的,患者每天在家庭门诊环境中佩戴几个小时。摄动分析表明,个体患者的生理行为确实是通过分析有效地学习,对生理动力学的变化具有很高的敏感性。在患者定期随访期间,分析结果与没有计划外医疗事件和自我报告的健康状况进行比较,表明错误警报负担非常低,表明该方法对于远程临床监测是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信