Network of compression networks to extract useful information from multivariate time series

IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
David M Walker, Débora C. Corrêa
{"title":"Network of compression networks to extract useful information from multivariate time series","authors":"David M Walker, Débora C. Corrêa","doi":"10.1093/comnet/cnad018","DOIUrl":null,"url":null,"abstract":"\n Compression networks are the result of a recently proposed method to transform univariate time series to a complex network representation by using a compression algorithm. We show how a network of compression networks can be constructed to capture relationships among multivariate time series. This network is a weighted graph with edge weights corresponding to how well the compression codewords of one time series compress another time series. Subgraphs of this network obtained by thresholding of the relative compression edge weights are shown to possess properties which can track dynamical change. Furthermore, community structures—groups of vertices more densely connected together—within these networks can identify partially synchronized states in the dynamics of networked oscillators, as well as perform genre classification of musical compositions. An additional example incorporates temporal windowing of the data and demonstrates the potential of the method to identify tipping point behaviour through the analysis of multivariate electroencephalogram time series of patients undergoing seizure.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"57 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnad018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Compression networks are the result of a recently proposed method to transform univariate time series to a complex network representation by using a compression algorithm. We show how a network of compression networks can be constructed to capture relationships among multivariate time series. This network is a weighted graph with edge weights corresponding to how well the compression codewords of one time series compress another time series. Subgraphs of this network obtained by thresholding of the relative compression edge weights are shown to possess properties which can track dynamical change. Furthermore, community structures—groups of vertices more densely connected together—within these networks can identify partially synchronized states in the dynamics of networked oscillators, as well as perform genre classification of musical compositions. An additional example incorporates temporal windowing of the data and demonstrates the potential of the method to identify tipping point behaviour through the analysis of multivariate electroencephalogram time series of patients undergoing seizure.
网络压缩网络从多变量时间序列中提取有用信息
压缩网络是最近提出的一种利用压缩算法将单变量时间序列转换为复杂网络表示的方法的结果。我们展示了如何构建一个压缩网络网络来捕获多元时间序列之间的关系。该网络是一个加权图,其边缘权重对应于一个时间序列的压缩码字对另一个时间序列的压缩程度。通过对相对压缩边权值进行阈值处理得到的网络子图具有跟踪动态变化的特性。此外,在这些网络中,社区结构——更紧密连接在一起的顶点群——可以识别网络振荡器动态中的部分同步状态,以及对音乐作品进行类型分类。另一个例子结合了数据的时间窗口,并展示了该方法通过分析癫痫发作患者的多变量脑电图时间序列来识别临界点行为的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of complex networks
Journal of complex networks MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.20
自引率
9.50%
发文量
40
期刊介绍: Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信